Apple ProDOS Assembler Tools "

Forthe Apple // Family

For use with Workbench Binder A7P0001 A2W0013

Customer
Satisfaction

If you discover physical defects in the manuals distributed with an Apple product orin the
media on which a software product is distributed, Apple will replace the documentation
or media at no charge to you during the 90-day period after you purchased the product.

In addition, if Apple releases a corrective update to a software product during the 90-day
period after you purchased the software, Apple will replace the applicable diskettes and
documentation with the revised version at no charge to you during the six months after
the date of purchase.

In some countries the replacement period may be different; check with your authorized
Apple dealer. Return any item to be replaced with proof of purchase to Apple or an
authorized Apple dealer.

Limitation on
Warranties
and Liability

Even though Apple has tested the software described in this manual and reviewed its
contents, neither Apple nor its software suppliers make any warranty or representation,
either express or implied, with respect to this manual or to the software described in this
manual, their quality, performance, merchantability, or fitness for any particular purpose.
As aresult, this software and manual are sold “‘as is,” and you the purchaser are
assuming the entire risk as to their quality and performance. In no event will Apple or its
software suppliers be liable for direct, indirect, incidental, or consequential damages
resulting from any defectin the software or manual, even if they have been advised of
the possibility of such damages. In particular, they shall have no liability for any
programs or data stored in or used with Apple products, including the costs of recovering
or reproducing these programs or data. Some states do not allow the exclusion or
limitation of implied warranties or liability for incidental or consequential damages, so
the above limitation or exclusion may not apply to you.

Copyright

This manual and the software (computer programs) described in it are copyrighted by
Apple or by Apple’s software suppliers, with all rights reserved. Under the copyright
laws, this manual or the programs may not be copied, in whole or part, without the
written consent of Apple, except in the normal use of the software or to make a backup
copy. This exception does not allow copies to be made for others, whether or not sold,
but all of the material purchased (with all backup copies) may be sold, given or loaned to
another person. Under the law, copying includes translating into another language.

You may use the software on any computer owned by you but extra copies cannot be
made for this purpose. For some products, a multi-use license may be purchased to
allow the software to be used on more than one computer owned by the purchaser,
including a shared-disk system. (Contact your authorized Apple dealer for information
on multi-use licenses.)

Product Revisions

Apple cannot guarantee that you will receive notice of a revision to the software
described in this manual, even if you have returned a registration card received with the
product. You should periodically check with your authorized Apple Dealer.

© Apple Computer, Inc. 1983
20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010

Apple and the Apple logo are registered trademarks of Apple Computer, Inc.
Simultaneously published in the United States and Canada. All rights reserved.
Any additional trademark information is listed on the last page of this manual.

WORKBENCHWORKBENCHWORKBENCHWORKBENCHWORKBENCHWORKBENCHWORKBENCHWORKBENCH
WORKBENCHWORKBENCHWORKBENCHWORKBENCHWORKBENCHWORKBENCHWORKBRENCHWORKBRANCH
WORKBENCHWORK BENCHWORK BENCHWORKBENCHWORKBENCHWORKBENCHWORKBENCHWORKBENCH

ProD0OS Assembler Tools

WORKBENCHWORK BENCHWORKBENCHWORKBENCHWORKBENCHWORKBENCHWORKBENCHWORKBENCH
WORKBENCHWORKBENCHWORKBENCHWORKBENCHWORKBENCHWORKBENCHWORKBENCHWORKBENCH
WORKBENCHWORKBENCHWORKBENCHWORKBENCHWORKBENCHWORKBENCHWORKBENCHWORKBENCH

#33-A551--A

Customer Satisfaction

It you discover physical defects in the manuals distributed with an Apple product or in the
media on which a software product is distributed, Apple will replace the documentation
or media at no charge to you during the 90-day period after you purchased the product.

In addition, if Apple releases a corrective update to a software product during the 90-day
period after you purchased the software, Apple will replace the applicable diskettes and
documentation with the revised version at no charge to you during the six months after
the date of purchase.

In some countries the replacement period may be different; check with your authorized
Apple dealer. Return any item to be replaced with proof of purchase to Apple or an
authorized Apple dealer.

Limitation on Warranties
and Liability

Even though Apple has tested the software described in this manual and reviewed its
contents, neither Apple nor its software suppliers make any warranty or representation,
either express or implied, with respect to this manual or to the software described in this
manual, their quality, performance, merchantability, or fitness for any particular
purpose. As a result, this software and manual are sold “asis,” and you the purchaser
are assuming the entire risk as to their quality and performance. In no event will Apple or
its software suppliers be liable for direct, indirect, incidental, or consequential damages
resulting from any defect in the software or manual, even if they have been advised of
the possibility of such damages. In particular, they shall have no liability for any
programs or data stored in or used with Apple products, including the costs of recovering
or reproducing these programs or data. Some states do not allow the exclusion or
limitation of implied warranties or liability for incidental or consequential damages, so
the above limitation or exclusion may not apply to you.

Copyright

This manual and the software (computer programs) described in it are copyrighted by
Apple or by Apple’s software suppliers, with all rights reserved. Under the copyright
laws, this manual or the programs may not be copied, in whole or part, without the
written consent of Apple, except in the normal use of the software or to make a backup
copy. This exception does not allow copies to be made for others, whether or not sold,
but all of the material purchased (with all backup copies) may be sold, given, or lent to
another person. Under the law, copying includes translating into another language.

You may use the software on any computer owned by you, but extra copies cannot be
made for this purpose. For some products, a multi-use license may be purchased to
allow the software to be used on more than one computer owned by the purchaser,
including a shared-disk system. (Contact your authorized Apple dealer for information
on multi-use licenses.)

Product Revisions

Apple cannot guarantee that you will receive notice of a revision to the software
described in this manual, even if you have returned a registration card received with the
product. You should periodically check with your authorized Apple dealer.

© Apple Computer, Inc. 1984
20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010

Apple and the Apple logo are registered trademarks of Apple Computer, Inc.
Simultaneously published in the United States and Canada. All rights reserved.

Warning

This equipment has been certified to comply with the limits for a Class B computing
device, pursuant to Subpart J of Part 15 of FCC Rules. Only peripherals (computer
input/output devices, terminals, printers, etc.) certified to comply with the Class B limits
may be attached to this computer. Operation with non-certified peripherals is likely to
result in interference to radio and TV reception.

Reorder Apple Product #A2W0013

Page iii

Table of Contents

ix Preface: About This Book

xi Who This Book Is For and What You Should Already Know

xi What This Book Contains and What It Will Teach You

xii The Tutorials

xii The Appendixes

xiii Related Publications

xiii Guides to Programming the Apple II in Assembly Language
xiii 65P2 Microprocessor Reference Manuals

—

Chapter 1: TIntroduction to 65f2 Assembly Language

The Four Programming Tools
Requirements
What You Should Know
What You Should Have
If You Have Other Accessories
Overview of Assembly-Language Programming
Creating an Assembly-Language Source File
Assembling Your Program
Testing and Verifying Your Program
Running Assembly-Language Programs Directly From BASIC
Calling an Assembly-Language Program From a BASIC Program

NNN~NOOES W

9 Chapter 2: The Editor

13 About This Chapter
14 Overview
15 Tutorials

15 Getting Started

16 The Editor's Command Level

18 Using the Editor to Enter Text
19 Displaying the Text

20 Line Editing

21 Storing and Retrieving Files

23 Writing a Program With the Editor

Page iv Table of Contents

25 Leaving the Editor

26 Reference Section

26 The Editor Command Level

28 Accessing Disk Volumes and Directories
31 Saving and Retrieving Text Files

34 Manipulating Lines in the Text Buffer
38 Viewing Your Text in the Text Buffer
40 Viewing a Text File From Disk

4 Changing Text Within a Line

46 Editing Two Files At Once

47 Altering the Display

49 Leaving the Editor

52 Loading and Saving Non-Text Files

56 Managing Disk Directories

58 Using a Prianter With the Editor

61 Automatic Command Execution

65 Chapter 3: The 6502 Assembler

69 About This Chapter
78 Overview
71 Tutorial

71 Getting Started

72 Assembling Your Program

75 Using the Assembler

75 Invoking the Assembler

76 Error Recovery

76 Stopping the Assembly

77 The ProDOS DATE and TIME

77 Generating Assembly Listings

85 Assembly Language Source Files

91 The Syntax of Assembly Statements
91 Giving Directions to the Assembler
92 Controlling the Overall Assembly
99 Assigning Information

192 Generating Data in Your Object Code

196 Controlling Conditional Assembly

199 Controlling Source Files

111 Controlling Assembly Listings

114 Using Macros in Assembly-Language Programs
115 Invoking Macros in a Source File

115 The Macro Definition File

119 Chapter 4: The Bugbyter Debugger

123 About This Chapter

124 Overview

125 Restrictions on Using Bugbyter
126 Tutorials

127 Getting Started

Table of Contents

134
125
139
141
142
144
145
146
146
147
147
148
148
150
151
152
154
154
162
164
166
169

171

173
173
175
176

179

183

183
183
184
184
185
185
185
186
186
187
187
188
188
188
189

T.oading Your Program
Single-Stepping Through Your Program
Using the Memory Subdisplay
Tracing Your Program
Changing Your Program in Memory
Viewing a Page of Memory
Using Bugbyter
Relocating the Bugbyter Program
Entering the Monitor
Restarting Bugbyter
Memory and the Bugbyter Displays
Using the Memory Subdisplay
Viewing the Memory Page Display
Altering the Contents of Memory
Altering the Contents of Registers
Altering Bugbyter's Master Display Layout (SET)
Controlling the Execution of Your Program
Using Single-Step and Trace Modes
Using Execution Mode
Debugging Real-Time Code
Debugging Programs That Use the Keyboard and Display
Executing Undefined Op-Codes

Chapter 5: The Relocating Loader

About This Chapter
Overview

Restrictions
Using the Relocating Loader

Appendixes: Contents

Appendix A: Quick Reference Guide to the Editor

Editor Commands Arranged by Function
Accessing Disk Volumes and Directories
Storing and Retrieving Text Files
Manipulating Lines in the Text Buffer
Viewing Text in the Text Buffer
Changing Text Within a Line
Editing Two Files at Once
Altering the Display
Leaving the Editor
Loading and Saving Non-Text Files
Managing Disk Directories
Printing Files
Automatic Command Execution
Invoking the Assembler

Editor Commands Arranged Alphabetically

Page v

Page vi Table of Contents

194 Edit Mode Keystroke Summary

195 Appendix B: Quick Guide to 6502 Assembly Language

195 Summary of Addressing Modes

197 Summary of Assembler Directives
199 Summary of 65$2 Mnemonics

2p1 Additional 65CP2 Mnemonics

203 Appendix C: Quick Reference Guide to Bugbyter

203 Bugbyter Command Level

204 General Commands

205 Register Reference Commands
205 Execution Commands

206 Breakpoints

207 Memory Reference

207 Disassembly Options for Trace and Single-Step Modes
209 Trace and Single-Step Modes
219 User Soft Switches

211 Appendix D: Error Messages

211 Editor Messages

211 ProDOS Errors

215 Editor Command Errors
217 Assembler Messages

217 ProD0OS Errors

219 Syntax Errors

227 Appendix E: Object File and Symbol Table Formats

227 Object File Format
231 Symbol Table Formats
231 Symbolicname

231 Flagbyte

235 Appendix F: Editing BASIC Programs

237 Appendix G: System Memory Use

237 The Editor/Assembler
239 The Bugbyter Debugger

241 1Index

Chapter 2:

Page vii

List of Figures and Tables

The Editor

45 Table

Chapter 3:

2-1. Summary of Edit Mode Keys

The 6502 Assembler

81 Figure 3-1. A Typical Assembly Listing
84 Figure 3-2. Example of Symbol Table

Chapter 4:

The Bugbyter Debugger

155 Table
1680 Table

Appendix B:

4~1. Debugging Commands in Single-Step and Trace Modes
4-2, Display Options in Trace and Single-Step Modes

Quick Reference Guide to 6502 Assembly Language

196 Table

Appendix E:

B-1. Summary of Addressing Modes

Object File and Symbol Table Formats

228 Table
229 Table

Appendix G:

E~1. Relocatable File Format
E-2. Relocatable File Relocation Dictionary Format

System Memory Use

238 TFigure G-1. TFRditor/Assembler Memory Map
239 Figure G-2. Bugbyter Memory Map

Page viii

xi
xi
xii
xii
xiii
xiii
xiii

Page

Preface: About This Book

Who This Book Is For and What You Should Already Know
What This Book Contains and What It Will Teach You
The Tutorials
The Appendixes
Related Publications
Guides to Programming the Apple II in Assembly Language
6502 Microprocesor Reference Manuals

ix

Page x

Page xi

Preface: About This Book

Who This Book is For and What You Should Already Know

This book is for programmers who want to write assembly-language
programs for the Apple II, the Apple II Plus, or the Apple ITe. All
three of these computers are based on the 65@2 microprocessor. This
book assumes that you have done some programming in BASIC or Pascal on
an Apple computer system, and have read one or more books on 6502
assembly-language programming (see the list of related publications at
the end of this Preface).

What This Book Contains and What It Will Teach You

The ProDOS™ Assembler Tools include four programming tools that will
help you create and execute assembly-language programs to run on any
Apple II computer. These tools are the Editor, the Assembler, the
Bugbyter debugger, and the Relocating Loader.

Each of the main chapters in this book contains an introduction to a
programming tool, a brief tutorial on the use of the tool, and a
detailed reference section describing how to use the full capabilities
of the tool. After reading this manual and completing the short
tutorials, you should be able to do the following:

- Use the Editor (Chapter 2) to create and modify program source
files, and to store them on disk. You can also use the Editor
to edit ProDOS EXEC files and BASIC program source files.

- Use the Assembler (Chapter 3) to generate an executable
program.

Page xii Preface: About This Book

~ Use the Bugbyter debugger (Chapter 4) to test and verify the
execution of your programs. You will also know how to use the
Bugbyter to help you locate and fix any errors that might creep
into your programs.

- Use the Relocating Loader (Chapter 5) to load and execute
assembly language programs during the execution of a BASIC
program.

The Tutorials

You will actually use the programming tools as you complete the
tutorials in Chapters 2, 3, and 4. In the Editor tutorial, you will
create an assembly-language source file and store it on disk. 1In the
Assembler tutorial, you will assemble the source file and produce an
executable object program. In the Bugbyter tutorial, you will test the
operation of this object program and verify that it executes correctly.

Each tutorial builds on the one before, so you should go through them in
sequence. Although you don't have to go through the tutorials to
understand the tools described in this manual, they are the quickest way
to get started programming in assembly language.

The Appendixes

Appendixes A, B, and C serve as Quick References to the Editor,
Assembler, and Bugbyter.

Error messages are explained in Appendix D.
The other Appendixes contain useful information on file and table

formats, using the Editor to edit ProDOS EXEC files and BASIC programs,
system memory use, and Editor/Assembler file components.

Preface: About This Book Page xiii

Related Publications

Guides to Programming the Apple II in Assembly Language

De Jong, Marvin. Apple II Assembly Language. Indianapolis: Howard
Sams, 1982. This complete manual, with an excellent introduction, was
written using an early version of the Editor/Assembler. The publisher's
address is 4300 West 62nd St.., Indianapolis IN 46268.

Hyde, Randy. Using 6502 Assembly Language. Northridge: DATAMOST,
1981. This thorough Apple II manual includes many tables and an
introduction to the Sweet—16 ROM-coded numeric routines. The
publisher's address is 19273 Kenya St., Northridge, CA 91326.

Leventhal, Lance. 6502 Assembly Language Programming. Berkeley:
Osborne/McGraw-Hill 1979. A guide to programming the 6502, 6528,

and 6522 microprocessors. The publisher's address is 63§ Bancroft Way,
Berkeley, CA 94714.

6502 Microprocessor Reference Manuals

Applications Information 8Y65/@ Microprocessor Family. Santa Clara:
Synertek Inc. 198f. A detailed pamphlet on the internal operation of
the 652 microprocessor, including complete operation code timing
diagrams. The publisher's address is P.0. Box 552, MS/34, Santa Clara,
CA 95@52.

Programming Manual, MCS65§p Microcomputer Family. Norristown: MOS
Technology, 1976. This is the standard reference for programming the
6502 microprocessor, by the company that designed it. The publisher's
address is 95@ Rittenhouse Rd., Norristown, PA 194@1. Publication
number 6500-50A.

R6509 Programming Manual. Anaheim: Rockwell International Corp., 1979.
An excellent alternative to the MOS Technology manual, it includes a
Programming Reference Card. The publisher's address is P.0. Box 3669,
Anaheim, CA 928@3.

6502 Microprocessor Instant Reference Card. Hackensack: Micro Logic
Corp., 1980. A comprehensive single-card chart of everything you want
to know about programming the 65§2. The publisher's address is

P.0. Box 174, Hackensack, NJ #7602. Product number 1@1A.

Page xiv

NN~ ~NoOO P eew

Page 1

Chapter 1

Introduction to 6502 Assembly Language

The Four Programming Tools
Requirements
What You Should Know
What You Should Have
If You Have Other Accessories
Overview of Assembly-Language Programming
Creating an Assembly-Language Source File
Assembling Your Program
Testing and Verifying Your Program
Running Assembly-Language Programs Directly From BASIC
Calling an Assembly-Language Program From a BASIC Program

Page 2

Page 3

Chapter 1

Introduction to 65¢2 Assembly Language

Assembly-language programming is a powerful technique for getting the
most out of your Apple computer. The ProDOS Assembler Tools will help
you to create assembly-language programs that can run on any Apple II
system.

The Four Programming Tools

This tool kit contains everything you need to write, assemble, and debug
assembly-language programs:

- An Editor that lets you create and change assembly-language
source programs.

- An Assembler that translates your assembly-language source
programs into executable 65¢2 object programs.

- The Bugbyter debugging program, a powerful tool for testing and
debugging your programs.

- A Relocating Loader that allows you to load and execute your
assembly-language programs during the execution of a BASIC
program.

Page 4 Chapter l: TIntroduction to 6502 Assembly Language

Requirements

What You Should Know
Before you continue reading this manual, you should know

- How to set up and ruan your Apple IT system (see the owner's
manual that came with the system);

- How to use ProD0S to manipulate disk files (see the manual
BASIC Programming With ProD0S);

- TElementary 65@¢2 assembly-language programming concepts (see the
list of Related Publications in the Preface to this manual).

What You Should Have
To use the ProDOS Assembler Tools, you need

- A computer in the Apple II family with at least 64K of RAM
(random-access memory)

- A video monitor
- At least one Disk II disk drive and controller

- the ProDOS User's Manual and the ProDOS Technical
Reference Manual.

A printer and a second disk drive are useful, but not required.

If You Have Other Accessories

The programming tools in this tool kit recognize which model of the
Apple II family (Apple II, Apple II Plus, Apple IIe, and so on) you are
using. They also recognize and make use of certain accessories that you
may have installed in your system,

The system is much easier to use if you have

- An Apple ITe with an Apple IIe 8P-Column Text Card

- An Apple IT or Apple Ile with an Advanced Logic Systems
Smarterm 8@-Column Text Card.

Requirements Page 5

The Editor and Assembler recognize the 8@-Column Text Card if it is
installed in your Apple ITIe. They also recognize the Advanced Logic
Systems Smarterm 8f-Column Text Card if it is installed in slot 3 of
your Apple II, Apple 1I Plus, or Apple ITe. If you have one of these
cards installed in your system, the Editor/Assembler will automatically
display a full 8@ columns when you are editing or assembling your
programs.

An assembly-language program designed to run on more than one Apple II
configuration must be able to identify the particular member of the
Apple II family on which it is rumning. Refer to the discussion of the
System Identification Byte in the ProDOS Technical Reference Manual.

The Editor also takes advantage of the uppercase and lowercase
capability of the Apple ITe computer, or of any Apple II or Apple II
Plus that has the l-wire SHIFT-key modification and can display both
uppercase and lowercase characters. The Assembler can accept lowercase
source files, although it does not distinguish between uppercase and
lowercase except when printing.

By the Way: The Assembler Tools assume that you have a
printer that prints at least 8@ characters per line,
although a printer 1is not required. A program with more
than 20® source lines will require that you print your
assembly listings and use them to keep track of your
programs.

Page 6 Chapter 1: Introduction to 6502 Assembly Language

Overview of Assembly—Language Programming

If you are new to assembly-language programming, the following overview
briefly shows how you can use the ProDOS Assembler Tools to create
working assembly-language programs for your Apple II.

An assembly-language program starts as an idea or a task that you want

to accomplish., As you organize your thoughts about how your Apple can

accomplish this task, you define the logic of a program. A program is

merely an ordered set of detailed instructions designed to accomplish a
specific task.

Translating these thoughts into a working Apple II assembly-language
program involves several distinct steps:

- Using the Editor to create an assembly-language source file;

- Using the Assembler to assemble your source file, creating an
executable object program;

- Using the Bugbyter program to test and debug your program;

- Finally, running your working program, either as a stand-alone
program or in conjunction with a BASIC program.

Creating an Assembly-Language Source File

You will use the Editor to write your assembly-language instructions
into a text file, then save this text file on disk. Chapter 2 describes
how to use the Editor and includes a tutorial on editing
assembly-language programs.

These text files are called assembly-language source files. A source
file is not an executable program; it is just an organized file of text
characters that represent assembly-language instructions and operands.
In this source file, you will use a number of three-letter sequences,
called mnemonics, to represent individual assembly-language
instructions. You can explicitly represent addresses or elements of
data in your program, or assign symbolic names to these addresses.
These symbolic names are called idemtifiers.

Overview of Assembly-Language Programming Page 7

Assembling Your Program

You will use the Assembler to translate your assembly-language source
files into executable object programs. An object program is the
machine-specific binary code produced by an assewbler or compiler. The
Assembler is actually one module of the combined Editor/Assembler
program. The Assembler translates the instruction mnemonics in your
source file into machine-readable codes, and translates the identifiers
that you have used into the actual data or memory references that will
be used by your computer. The Assembler then stores the assembled
program onto disk in the form of a binary file. Chapter 3 describes the
features and operation of the Assembler.,

Testing and Verifying Your Program

Before trying to run an assembly-language program, you will probably
want to make sure that it will execute correctly. You can use the
Bugbyter program to test your program, and to fix any errors that you
find. Using Bugbyter, you can easily step through any portion of your
assembly-language program, checking that each instruction executes
properly and that the correct data is written to the proper locations.

Bugbyter lets you see exactly what your Apple II does when it executes
an assembly-language instruction. Chapter 4 describes Bugbyter in
detail.

Running Assembly-Language Programs Directly From BASIC

To run an executable assembly-language program on your Apple II, simply
use the ProDOS command BRUN from Applesoft BASIC. The ProDOS User's
Manual describes how to use the BRUN command.

Calling an Assembly-Language Program From a BASIC Program

Assembly-language programs can be called as subroutines during the
execution of a BASIC program. This type of programming combines the
advantages of both BASIC and assembly-language programming. Use either
the BASIC BLOAD command, or (for greater flexibility) the Relocating
Loader subroutines described in Chapter 5.

Page 8 Chapter 1: Introduction to 6502 Assembly Language

WARNING

Before using the ProDOS Assembler Tools, you should make a
backup copy of the system disks. The ProDOS User's Manual
explains how to back up your disks.

Page 9

Chapter 2

The Editor

Page 10

Chapter 2

The Editor
13 About This Chapter
14 Overview
15 Tutorials
15 Getting Started
16 The Editor's Command Level
18 Using the Editor to Enter Text
19 Displaying the Text
px) Line Editing
21 Storing and Retrieving Files
23 Writing a Program With the Editor
25 Leaving the Editor
26 Reference Section
26 The Editor Command Level
26 Getting Help
26 Abbreviating Editor Commands
27 Typing More Than One Command per Line
27 Relative Line Numbers: A Warning
27 Time and Date
27 Typing Uppercase and Lowercase Characters
28 Accessing Disk Volumes and Directories
28 The ProDOS Prefix
29 Displaying the Online Volume Names
29 The Current Prefix
29 Changing the Current Prefix
39 Viewing Disk Directories
31 Saving and Retrieving Text Files
31 Loading a Text File
32 Combining Two Files Into Ome
32 Saving Your Edited Files
34 Manipulating Lines in the Text Buffer
34 Adding Lines
35 Inserting Lines
35 Deleting Lines From the Buffer
36 Replacing Lines in the Text Buffer
36 Copying and Moving Lines
37 Clearing the Text Buffer
38 Viewing Your Text in the Text Ruffer

38 Listing Lines of Text

Chapter 2:

39
39
49
49
49
41
42
43
43
46
47
47
48
48
49
49
50
51
51
52
52
53
54
56
56
57
57
57
58
58
58
59
69
61
61
62
63
63
64

The Editor

Repeating a List Command

Printing Lines of Text
Viewing a Text File From Disk
Changing Text Within a Line

Searching Text

Search and Replace

Changing the Command Delimiter

Entering Edit Mode

Character Editing With Edit Mode
Editing Two Files At Once
Altering the Display

Setting Tabs

Using a 4@- or 8p—Column Display

Truncating the Display
Leaving the Editor

Exiting to Another Command Interpreter

Exiting to ROM—-Resident BASIC

Entering the Monitor

Identifying the Absolute Location of Text in Memory
Loading and Saving Non-Text Files

Loading Binary Files

Saving Binary Files

Loading and Saving Other Data Files
Managing Disk Directories

Creating a New Subdirectory

Renaming Files and Volumes

Deleting Files

Locking Files

Unlocking Files
Using a Printer With the Editor

Setting Up the Printer

Activating the Printer

Printing Text Files

Printing Text Files Directly From Disk
Automatic Command Execution

Creating Exec Files

Executing Exec Files

The EDASM.AUTOST Startup Exec

Using Execs With the Assembler

Page 11

Page 12

Page 13

Chapter 2

The Editor

About This Chapter

The Editor is a powerful tool for creating and modifying text files, and
for storing those files on disk. Typically, you will use the Editor to
create assembly-language source files that you will later use as input
to the Assembler. You can also use the Editor for other purposes, such
as creating and editing ProDOS EXEC files or BASIC source files.

This chapter, and the two chapters that follow it, are organized in a
similar way. This chapter consists of three main parts:

- An Overview of the Editor.

- A series of brief tutorials on the use of the Editor. If you
follow the directions in this chapter's tutorials, you will
create an assembly-language source file that you will later use
when you do the Assembler and Bugbyter tutorials in Chapters 3
and 4.

~ a Reference Section that describes each of the Editor's
functions in detail.

In addition, Appendix A contains two summaries of the Editor's commands:
one lists them by function, the other alphabetically.

Page 14 Chapter 2: The Editor

Overview

The Editor is an Apple II program that allows you to manipulate files of
text that it holds in its edit buffer. This buffer is a temporary
storage area that holds more than 37,009 text characters, or about 1,8p¢
lines of assembly-language code.

The Editor can move and edit both individual characters and whole lines
of text. The Editor treats the line as the basic unit of information.

A line is defined as a sequence of up to 127 characters, ending with a

carriage return.

Most Editor commands refer to a particular line or group of lines. The
Editor keeps track of every line in your file; you refer to a particular
line using that line's relative line number. A relative line number

is a text line's position relative to the beginning of the file.

Although you will typically use the Editor to create and modify
assembly-language program source files, you can also use the Editor to
edit ProDOS EXEC files or BASIC program source files. See Appendix F
for further information.

Tutorials Page

When

Tutorials

you finish these tutorials, you will know how to
Start the Editor

Create a text file by typing lines of text to the Editor's text
buffer

Use the Editor commands to edit or change the text file
Store the text file on disk

Retrieve the text file from Aisk (so that you can further
revise it).

By the Way: The program you will create is a very
elementary one--it simply writes five characters into
particular memory locations. The concepts that you use when
you create, assemble, and test this very small program are
worth learning, and we recommend that you do this tutorial
and the ones in the next two chapters.

Getting Started

1.

Insert the ProDOS Assembler Tools disk into a disk drive and
turn on the power to the computer. Your Apple II loads the
ProDOS operating system and briefly displays the ProDOS
copyright message while loading EDASM.SYSTEM, the
Editor/Assembler program's main module.

If you have a ProDOS—compatible clock card installed in your
system, skip to Step 3. If you have none, the display shown on
the next page allows you to enter the current date:

15

Page 16 Chapter 2: The Editor

PRODOS EDITOR-ASSEMBLER //

ENTER THE DATE AND PRESS RETURN

DD-MMM~-YY

- TFirst, type the current day as two digits, using a leading zero
for days less than 1f. The cursor skips to the month field.

~ Type the three-letter abbreviation for the current month: JAN,
FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, or DEC. The
cursor skips to the year field.

- Enter the year as a two-digit number from Pl to 99 (zero is
invalid).

- After entering the entire date, press RETURN to enter the
system's Command Level.

Because the date routine checks only that the day is less than
32 and the year is not zero, you could enter Feb 31, 1901.

3. Leaving the system disk in your disk drive, press RETURN. The
remainder of the Editor is then loaded from the system disk.

The Editor's Command Level

To show that you have reached the Editor Command Level, the Editor
presents a ProDOS FEditor/Assembler copyright message and the current
date and time, followed by a colon prompt and cursor, as shown in the
following display:

Tutorials Page 17

PRODOS EDITOR-ASSEMBLER //
BY JOHN ARKLEY
(C) COPYRIGHT 1982

APPLE COMPUTER INC

DD-MMM-YY HH:MM

You are in the the Editor's Command Level whenever you see the colon (:)
prompt character at the left margin, followed by a reverse or blinking
cursor. How the cursor looks depends on which Apple II system and
which, if any, 8f@-column text card you are using.

From the Editor's Command Level, you can
- Add data to the text buffer
- Change data in the text buffer
~ Write data from the text buffer to disk.
You can also invoke the Assembler from this Command Level.

Because ProDOS sets the startup prefix to /EDASM, the Assembler Tools
disk must be mounted in a disk drive when the ASM command is executed.

Both the Editor and the Assembler (Assembler Tools programs EDASM.ED and
EDASM.ASM) must be accessible at all times, although they are not in
memory at the same time. 1In fact, the Editor and the Assembler are
loaded alternately into the same area of memory, according to which one
is needed for the operation at hand.

Page 18 Chapter 2: The Editor

Using the Editor to Enter Text

When you first start the Editor, it creates a text buffer in memory.

1.

To see the size of the text buffer, type
FILE

and press RETURN, The Editor displays three lines of data,
showing the current pathname (there is none at startup), the
number of bytes used in the text buffer, and the number of
unused bytes remaining in the text buffer. You will see a
display like the one below.

:FILE

$# BYTES USED
37375 BYTES REMAINING
65531 BYTES USED BY NON TEXT DATA
$2CP4 = XSAVE AUX TYPE

To add some lines of text to the text buffer, type
A

(for Add) after the colon prompt, and press RETURN. The Editor
displays 1 to show that the next line typed will be added to
the Editor's text buffer as the first line of text.

Type the following three lines of text, exactly as they appear
below. Where you see the underline (_) character, press the
SPACE bar. After typing each line, press RETURN.

ORG$1909
START _LDY #$C#
_LDX #9

The Editor accepts the lines of text as you type them, and
places the text into the Editor's text buffer.

Tutorials Page

be

When you have typed these lines and pressed RETURN after the
last line, just press RETURN a second time without typing any
other characters. Typing just RETURN (that is, a null or empty
line) ends the Editor's Input mode and returns you to the
Editor Command Level.

Displaying the Text

1.

To view the lines of text that you have just typed into the
text buffer, type

P
(for Print), and press RETURN. The Editor displays the text

that you have typed, inserting extra spaces wherever you had
typed a space character in your original text.

:P
ORG $1900
START LDY #3CO
DX #9

Note that the Editor interprets space characters in your text
as tab characters. The Editor's default tab settings align the
text in a reasonable format for assembly-language source files.

To display your text on the screen, together with each line's
relative line number, type

L

(for List) and press RETURN. The Editor again displays the
lines in the text buffer, this time displaying the Editor's
relative line numbers along with the text, as shown on the next
page.

19

Page 20 Chapter 2: The Editor

:L
1 ORG $1p00
2 START LDY #$cC@
3 LDX #0

A relative line number is the position of a line of text
relative to the beginning of the text buffer; line number two
is always the second line of a file, and so on. Relative line
numbers have nothing to do with any characters or numbers
stored within your text file. If you insert or delete lines of
text within your file, the relative position of all subsequent
lines changes.

By the Way: The Editor's relative line numbers should not be
confused with statement numbers you might have used in BASIC
programs. These BASIC statement numbers are actually stored
as part of the program text. If you are using the Editor to
edit a BASIC program, you will see two numbers associated
with each line: the relative line number calculated by the
Editor, and the statement number that is part of every BASIC
statement line.

Line Editing

Perhaps you made a mistake or two when you typed your text. You can
edit each line of text in turn, fixing typing errors as you go.

1. To correct errors or to add data, type
E
(for Edit) and press RETURN. The Editor displays the first

line of your text on the screen, with the cursor over the first
character:

Tutorials Page 21

1 _ORG $1009

2. To edit the first line of text:

Use the RIGHT ARROW and LEFT ARROW keys to move the cursor
along the line.

To replace a character, type the new character over the old
one.

To delete a character, place the cursor over that character and
press CONTROL-D.

To make an insertion, move the cursor to the character before
which the insertion is to go, and press CONTROL-I. Type the
characters you want to insert. When you finish inserting
characters, press RIGHT ARROW or LEFT ARROW.

3. Edit your text until it is exactly what you were instructed to
type. If there are no errors in your text (good for you!)
press RETURN until you are back in the Editor Command Level.
As you press RETURN after each line, the Editor incorporates
all the changes you have made to the displayed line, and then
displays the next line for you to edit.

4. When you are satisfied with the line as it appears on the
screen, press RETURN.

Storing and Retrieving Files

Having returned to the Editor Command Level, you can save your text on
the system disk.

1. To save your text, type
SAVE TESTPROGRAM

and press RETURN. The Editor saves your text in a new file
named TESTPROGRAM.

Page 22

2.

4,

Chapter 2: The Editor

To verify that your text file was created correctly, type

CAT

(for CATalog) and press RETURN.

the files on the disk, including the

The Editor displays a list of

file TESTPROGRAM, as shown

below:

:CAT

/EDASM
NAME TYPE BLOCKS MODIFIED
PRODOS SYS 28 2p-JAN-83
EDASM.SYSTEM SYS 8 2¢-JAN-83
EDASM.ED BIN 16 2p-JAN-83
EDASM.ASM BIN 28 29-JAN-83
BASIC.SYSTEM SYS 15 2p-JAN-83
TESTPROGRAM TXT #1 dd-mmm-yy

Each file in the catalog has a TYPE.
The Editor's SAVE command creates only
text files; your assembly-language program is a standard ProDOS

type is TXT (for TeXT).

sequential text file.

Note that TESTPROGRAM's

Each file is also dated; TESTPROGRAM has

been given the date you entered when you loaded the Editor.

To confirm that your text is still in the Editor's text buffer,

type

L

(for List) and press RETURN.

The Edi

tor displays the contents

of its text buffer, showing that your file is still there (as

well as on the disk).

To clear the text buffer,

NEW

type

and press RETURN. The Editor clears the text buffer, so that
you can type new text or perform some other function. If you

Tutorials Page 23

then type
L

and press RETURN, the Editor will show you that there is no
text in the buffer.

To load a text file that has been saved on the disk, type
LOAD

followed by a space and the text file's name, and press RETURN.
(For example, to reload the text file that you just saved, type

LOAD TESTPROGRAM
and press RETURN.)

To see that your text is now back in the Editor's text buffer,
type

L

and press RETURN. The Editor displays the text on the screen,
exactly as it looked before you saved it.

Writing a Program With the Editor

You have written the first three lines of an assembly-language source
file and saved it in the Editor's text buffer. To finish this program,
you will add more lines to the text buffer and then save the complete
program on disk.

1.

To begin appending lines to the program, type
A

and press RETURN. Note that the relative line number 4 appears
before the prompt. You are now ready to enter the rest of your
program, starting with line 4.

Type the lines shown on the following page. Before pressing
RETURN, make sure that the line is typed exactly as it appears
in the illustration, including spaces. To leave input mode,
press RETURN twice after the last line.

Page 24

4.

Chapter 2:

The Editor

LOOP_JSR_STORE
_INX
TCPX_#5
_BNE_LOOP
_RTS

STORE_INY

TYA
_STA_BUFF,X
_RTS
_DS_SED, $09
BUFF_DS 19, $00

To List what you've typed, type

L

and press RETURN,
have typed.

The Editor displays the text lines that you

Your program should now appear exactly as shown below.

START

LOOP

0N W =

9 STORE
19
11
12
13
14 BUFF

ORG
LDY
LDX
JSR
INX
CPX
BNE
RTS
INY
TYA
STA
RTS
DS

DS

$1009
#scg
o
STORE

#5
LOOP

BUFF,X

SED, $00
19,$00

If there are any mistakes, use the Line Editing commands to

correct them.

Tutorials Page 25

5. When you have finished, type
SAVE
and press RETURN. The Editor saves your completed

assembly-language program on the disk, automatically using the
name TESTPROGRAM.

Leaving the Editor
To leave the Editor and return to BASIC, type
EXIT
and press RETURN. You should now see the BASIC prompt (]).

You have now finished the first tutorial, in which you have learned how
to use the Editor to do a variety of tasks. You can now

- Start up the Editor

- Enter text into the Editor's text buffer
- FEdit the text in the text buffer

- Display the text in the text buffer

- Save a text file on disk

- Retrieve the text file from disk, in order to edit it and save
it again.

You will use your new TESTPROGRAM when you do the tutorials in the
Assembler and the Bugbyter chapters.

Page 26 Chapter 2: The Editor

Reference Section

The preceding tutorial introduced you to some of the basic features of
the Editor. The remainder of this chapter discusses them in detail, and
describes other features not mentioned in the tutorial.

The Editor Command Level
You are in the the Editor's Command Level whenever the colon (:) prompt

is displayed at the left margin, followed by the cursor. You can access
all of the Editor features by typing commands from this Command Level.

By the Way: The cursor can be an underscore, a box, or some
other character, depending on the specific Apple II system
and/or 8P-column text card installed.

Getting Help

When first learning to use the Editor, you may find it difficult to
remember all the commands and syntax. Fortunately, the Editor provides
a built-in "reference card' to remind you of these commands and their
syntax.

To view this "reference card" when you are using the Editor, type

?

after the colon prompt and press RETURN. The Editor then shows you the
first part of a three-part list of the Editor commands, together with
the most common syntax for each command. To see the second and third
parts, press any character key twice. If you are fast, you can
single-step the reference card display with the SPACE bar or cancel it
with CONTROL-C. You can print the help display; review the PTRON and
PTROFF commands in the section "Using a Printer With the Editor."

Abbreviating Editor Commands

When you type commands to the Editor, you can often abbreviate the
command names to just one or two letters. The Editor ignores any spaces
that you insert before the command or between the command and its
parameters.

Reference Section Page 27

Typing More Than One Command Per Line

If you type more than one Editor command on a single line, you must
separate the commands with coloms (:).

Use caution when typing more than one command on a command line. The
Editor executes the commands in sequence. If an error occurs, all
unused commands are discarded. In addition, if the command lines were
being executed from an EXEC file, the EXEC file will be terminated as
well. (A failure to locate the target character or string in a Change,
Find, or Edit search is not considered an error.)

Relative Line Numbers: A Warning

Whenever you type the Add, Delete, Insert, Copy, or Replace commands,
the relative line numbers of all subsequent lines in your text may be
changed. The Editor uses the new relative line numbers when executing
any subsequent commands. Always check the relative line numbers of any
text before you Replace or Delete it. Checking is especially important
if you type more than one command per command line.

Time and Date

Whenever you enter a null line at the Editor Command Level, the Editor
calls the ProD0S clock routine and displays the date. If your system
has a clock card that ProDOS can use, the current time is also
displayed.

Typing Uppercase and Lowercase Characters

You can insert lowercase characters in your text (for example, to have
your program display a message in lowercase). The method depends on
your particular Apple II system.

No special commands are needed if you have

- An Apple IIe computer or a more recent member of the Apple II
family

- An Apple II or Apple II Plus computer with the one-wire shift
key modification installed, and an ALS Smarterm 80~Column Text

Card in Slot 3.

If you have an Apple II or Apple II Plus computer with the one-wire
shift key modification installed, but not the ALS Smarterm 8¢-Column
Text Card:

Page 28 Chapter 2: The Editor

- You must indicate to the Editor that your SHIFT key is active
by typing

SET Lcase
and pressing RETURN.

- After enabling entry of lowercase characters, you can disable
it by typing

SET Ucase
and pressing RETURN.
If you have an Apple IT or Apple II Plus computer that does not have a
keyboard shift-key modification to allow you to type lowercase
characters, you can use two of the Editor's commands to act as software

shift keys. When you first start the Editor, it is set to accept
uppercase letters only.

- To enable the entry of lowercase characters, press CONTROL-E
and RETURN.

~ To disable lowercase, press CONTROL-W and RETURN.

By the Way: Although the Editor recognizes commands typed in
either uppercase or lowercase, character strings are all
sensitive to case. ProDOS recognizes "EditA" and "edita" as
the same pathname. On the other hand, these same two
strings are considered different strings when the Editor is
searching the text buffer for a Find, Change, or Edit
command.

Accessing Disk Volumes and Directories

The ProDOS Prefix

The Editor defines, changes, and clears the ProDOS prefix. The ProDOS
prefix determines which disk (or other mass storage volume) is searched
for the current directory or subdirectory. Each ProDOS disk has a
"volume name" or "root directory name." A root directory may contain
multiple levels of subdirectories.

Reference Section Page 29

The remainder of this section assumes that you understand certain
fundamental ProDOS concepts. If you are not familiar with the ProDOS
prefix, or with volumes and directories, please review the relevant
sections in your ProDOS User's Manual.

Displaying the Online Volume Names

To load files from disk, you need to know the complete pathnames to
those files. The volume name is an essential part of the pathname. To
see a list of the volume names of the disks that are in your disk
drives, type

ONLINE
and press RETURN.
ProDOS searches each avallable disk drive and reads the root directory

name or volume name from the disk. The Editor then displays the list of
online volume names.

The Current Prefix

When you load a file from disk, or save a file to disk, ProDOS prefixes
the pathname you give with the curreant ProDOS prefix (unless you start
your pathname with a slash, indicating that you are supplying a complete
pathname that includes a volume name, optional directory names, and a
filename).

To display the current ProDOS prefix, type
PreFiX

and press RETURN. This form of the PreFiX command causes the current
ProDOS prefix to be displayed.

The three files EDASM, EDASM.ED, and EDASM.ASM must all reside on the
same disk volume and within the same directory. This disk volume must
be in a drive when the Assembler is invoked with the ASM command. The
system will prompt you to insert this disk if it cannot be found when an
assembly is completed. EDASM may be invoked using the dash command from
the ProDOS BASIC interpreter.

Changing the Current Prefix

To change the current ProDOS prefix, type

PreFiX

and the appropriate pathname, and press RETURN. The pathname must not

Page 30 Chapter 2: The Editor

contain embedded spaces or any characters that are invalid for a
pathname., (Use the Online command to find out what volume names are
available.)

Error Messages: The error message BAD PATH/FILE NAME means
that the pathname you provided has invalid syntax. If the
pathname syntax is valid, but the pathname is nonexistent,
the message DIRECTORY NOT FOUND or PATH NOT FOUND appears,
depending on what was misspelled.

To restore the current ProDOS prefix to the startup prefix, type
PFX/

and press RETURN. This command syntax requests that the internal
startup prefix, retained by EDASM at boot time, become the current
prefix. The current user prefix becomes the startup prefix and it is
displayed as though the normal PREFIX pathname syntax had been used.

The Editor remembers the pathuname that you typed when you last loaded
your file or when you last saved your file. This pathname is called the
current pathname, and is used by the Editor to save you from having

to retype the pathname every time you want to back up your file onto
disk.

To view the Editor's current pathname, type
FILE

and press RETURN. The Editor displays the current pathname, along with
the length of the text in the buffer and the amount of space remaining
in the buffer, both in bytes. The sum of these two numbers is the total
memory currently available to the Editor. (If you have not yet executed
a Load or Save command during this edit session, there is no current
pathname associated with your text.)

Viewing Disk Directories

Whenever you are using the Editor, you can view the current (as
determined by the current prefix) disk directory.

To see the short form (4§ columns) of the current directory, type
CAT

and press RETURN.

Reference Section Page 31

To see the wide form (8f columns) of the current directory, type
CATALOG
and press RETURN.

To see a directory or subdirectory other than the current one, type

CAT

and the pathname to any available root directory or subdirectory, and
press RETURN., (This will not change the current prefix.)

Saving and Retrieving Text Files

The Editor is not limited to working only with assembly-language source
files —— in fact, it can work with any ProDOS sequential text file that
will fit in the Editor's buffer space. You can use the Editor to create
and modify EXEC files, and to examine and modify sequential data files
written by BASIC programs. See Appendix F for instructions on editing
BASIC programs. The Editor cannot work with random-access text files.

By the Way: When you type a file command to the Editor, type
the pathname just as you would under ProDOS. The pathname
is required when you refer to a file or a volume, no matter
where you are in the Editor/Assembler; you cannot refer to a
volume by its slot-drive location.

Loading a Text File

To load a text file that is stored on disk, type

L0OaD

and the pathname, and press RETURN. The Editor then loads the specified
text file into the Editor's text buffer. Any text previously in the
buffer is erased! (If you use a partial pathname, the ProDOS prefix
will be applied to your pathname.) You can then use the Editor's
commands to modify the file.

1f the Fditor does not find the specified file, it displays the message
FILE NOT FOUND. 1If you try to load a null file, you will see the
message PRODOS ERROR = $4C. Other error messages that may appear are
discussed in Appendix D.

Page 32 Chapter 2: The Editor

Combining Two Files Into One

You can combine two or more text files by using the Editor's Append
command.

To append a text file to the end of the text that you are currently
editing, type

APPEND <pathname>

where <pathname> is the pathname to a file on a mounted disk, and press
RETURN. The Editor then loads the specified text file from disk into
the text buffer and appends it to the end of the text already in the
buffer. This command does not affect the Editor's current pathname,
which remains the pathname used in the previous LOAD or SAVE command.

You can append a text file at a particular line in your program,
replacing that line and any text that currently follows it with the
text from the appended file. To do this, type

APPEND <line number> <{pathname>
and press RETURN. The Editor first deletes the specified line number

and all the lines that follow it in the text buffer, and then loads the
specified text file into the text buffer, following your existing text.

By the Way: To insert one text file into the middle of the
text you are editing, follow these steps:

- TFirst, APPEND the text file to the end of your existing
text, as described above.

-~ Then use the COpy and Delete commands to move the text
wherever you want within the text buffer. The Copy and
Delete commands are discussed in the section
"Manipulating Lines in the Text Buffer," later in
this chapter.

Saving Your Edited Files

Don't get so busy editing that you forget to back up your work. You
should save your text occasionally (perhaps every fifteen or twenty
minutes) to minimize the amount of work you might lose due to a power
failure. Although the chances of accidentally losing data are slight, a
one-second loss of power to the computer can wipe out hours of editing.
It is possible to lose your only copy of a file, or an entire disk, if a

Reference Section Page 33

power loss occurs during a SAVE to your disk. You can protect yourself
against this type of loss by alternately saving your program to two (or
more) disks.

0f course, you must save your text one last time when you are finished
editing it.

To save the contents of the text buffer, type
SaVE <pathname>

and press RETURN. The Editor writes the contents of the text buffer
into a text file, using the pathname that you specify. You can also
specify a range of lines to be saved, if you don't want to save the
entire file.

If you do not specify a pathname the Editor will save the text buffer
using its current pathname settings. For example, if you are saving
a file with the same pathname you used with the most recent LOAD
command, you need only type

SAVE

and press RETURN, and the Editor will save the text buffer, replacing
the older version file on disk.

You can find out the pathname that you used with the most recent LOAD or
SAVE command at any time by using the FILE command.

If you have not yet specified a pathname during the current edit session
(by using a LOAD or SAVE command), the Editor displays the file size
parameters as if you had entered a FILE command.

WARNING

The SAVE command causes the Editor to write over any text
file on the specified disk that has the same name as the
file that you are saving. The Editor does not warn you that
this is happening. To protect your files from being
accidentally overwritten, you should use the LOCK command to
write-protect the text files on a disk when you use the
Editor/Assembler. If you have LOCKed all the text files on
a disk and UNLOCK only the file you wish to edit, you cannot
accidentally overwrite a file just by misspelling a pathname
when typing the SAVE command (this can easily happen when
you are working with multiple source files whose names
differ only in the last few characters).

Page 34 Chapter 2: The Editor

If the specified disk is write-protected, or if no space remains for
your file, the Editor will display an error message. Error messages are
discussed in Appendix D.

Manipulating Lines in the Text Buffer

The Editor accepts a number of commands that add, delete, copy, insert,
and replace lines within the text buffer.

Adding Lines

Use the ADD command to add new lines to the end of the text buffer,
or to add lines after a specified line number. To add lines to the text
buffer, type

ADD
and a line number, and press RETURN.
If you simply type A, AD, or ADD in response to the command prompt and
do not specify a line number, the Editor will display the number

of the next line to be added to the end of the text buffer and will
place you in the Editor's Input mode.

Once you are in Input mode, the Editor will accept anything that you
type and will insert this text into the text buffer. You may type any
number of lines into the text buffer, terminating each line by pressing
RETURN. Each time you press RETURN, the Editor prompts you with the
line number of the next line to be added.

When you have finished typing your last line of text, press RETURN to
enter this last line, and then press RETURN again after the Editor
displays the next line number on the screen. This terminates the
Editor's Input mode and returns you to the Editor Command Level (the
Editor displays the command prompt on a new line). The editor also
terminates if you type CONTROL-D and then press RETURN. (This latter
method is included for those familiar with the DOS 3.3 version of the
Editor/Assembler.)

You may also use the ADD command with a line number. When you do this,
the Editor places you in Input mode, as described above, but any lines
that you type will be added just after the line with the relative line
number that you specified. The Insert command discussed below works
similarly, but Insert places any lines that you type before the line
with the specified relative line number.

When you are in Input mode, you may use all of the normal Apple II input
editing functiomns, including the arrow keys. If your Apple has the
Autostart ROM, you can also use the additional ESCAPE features to move
the cursor.

Reference Section Page 35

The Editor's Input mode allows you to place control characters into your
text file. When you type control characters onto the input line and
then backspace over them with the LEFT ARROW key, the Editor correctly
avoids moving the cursor back across the screen. You should be careful
not to insert control characters into your assembly-language programs,
because the Assembler does not accept control characters. When you are
using Input mode, control characters in your text are not displayed, but
they are displayed (in inverse video) when you use the List command to
list your text.

Inserting Lines

To insert lines into the text buffer before a particular number, type
INSERT

and a relative line number, and press RETURN. The Editor places you in
the Editor's Input mode, described earlier in relation to the Add
command. Any subsequent lines that you type are inserted into the

text buffer, just before the line with the specified relative line
number. If you type

INSERT 1

subsequent lines are inserted before the first existing line in the text
file.

To terminate Input mode, type a null line. Remember that when you
insert lines into your text, the relative line numbers of all lines that
follow these lines in the text buffer will be increased. Check the new
relative line numbers before you edit these lines,

Deleting Lines From the Buffer

To delete lines from the text buffer, type

DEL <first line number>-<last line number>
and press RETURN. First and last line numbers (separated by a hyphen)
represent the first and last lines to be deleted. For example, to
delete lines 1§ through 2§, type

DEL 1¢-20

and press RETURN. If you omit the hyphen and last line number, only the
one line will be deleted.

Page 36 Chapter 2: The Editor

WARNING
After you use the DEL command, the relative line numbers of

all the subsequent lines in the text buffer are changed.
This makes it dangerous to delete more than one range of
lines with one DEL command.

Replacing Lines in the Text Buffer

To replace several lines of text in the text buffer, type
REPLACE <first line number>-<last line number>

and press RETURN. The first and last line numbers (separated by a
hyphen) represent the first and last lines to be replaced. Using this
command is exactly like typing a DEL command, followed by an INSERT
command starting at the first line number specified. The Editor first
deletes all lines from the first to the last number specified, then
places you in Input mode, allowing you to insert any number of lines to
replace those deleted. You can insert lines exactly as you would after
typing an INSERT command, and you can terminate input with just a
RETURN.

Copying and Moving Lines

To copy a line or series of lines from one part of the text buffer to
another, type

Copy <first line>-<last line> TO <destination>
and press RETURN.

First line and last line (separated by a hyphen) represent the first and
last lines to be copied. <Destination> represents the line number
before which the copied lines are to be inserted. <{Destination> must
not fall between <first line> and <last line>. If you omit <last line>,
only <first line> is copied. If used, <last line> must be greater than
(first line>. The word TO is required.

To move lines from one part of the text buffer to another, you must use
two commands. First, COpy the original lines to their new location,
then use the DEL command to delete the lines from their original
location.

Reference Section Page 37

Note: Remember that when you COpy lines to a new location,
the relative line numbers of all text lines following that
location will change. This means that when you COpy lines
to a <destination> that is less than <first line>, the
relative line numbers of the original lines will be changed
when the Copied lines are inserted before them. If you want
to delete the original lines, you must check their new
relative line numbers before deleting them.

Clearing the Text Buffer

To clear all of your text from the text buffer, type
NEW

and press RETURN., The Editor clears its current text buffer, removing
your work from the buffer. The current pathname is also cleared when
the NEW command is used. You can use this command to clear the text
buffer before typing a new text file, or in conjunction with the SWAP
command described below.

To save the text in the text buffer, use the Editor's SAVE command.
When you type the NEW command, the Editor does not prompt you to save
your work before it clears the text buffer.

If the text buffer contains non-text data, loaded with the XLOAD command
(described later), the non-text header data is cleared and the text
buffer is returned to the '"text'" buffer state.

By the Way: If you should accidentally clear a text
buffer, you can restore the buffer by using the Monitor
commands. The NEW command merely resets an end-of-text
pointer and does not destroy the contents of the buffer.
Using the Monitor, you may be able to determine the previous
end-of-text address and then set the end-of-text pointer to
this address. The three text buffer pointers in the Editor
are defined in the Appendixes.

Page 38 Chapter 2: The Editor

Viewing Your Text in the Text Buffer
You can view the text in the text buffer either

- With relative line numbers, using the List command (control
characters are displayed in inverse video);

- Without relative line numbers, using the Print command (control
characters displayed as control characters).

Listing Lines of Text

To display lines of text from the text buffer, together with each line's
relative line number, use the List command. It has several variations.

- To list the entire text buffer, type

List
and press RETURN.

- To begin the listing with a specific line other than the first
line, type

List <starting line number>-—

and press RETURN, If <starting line number> is specified
without a hyphen, only that one line is listed.

- To list a range of lines, type

List <first line>-<last line>
and press RETURN. <First line> and <last line> must be
separated by a hyphen. <First line> must be a smaller number
than <last line>.

- To list two or more ranges of lines, type

List <first line>-<last line)>,<{first line>-<last line>

and press RETURN. The ranges must be separated by commas. The
Editor inserts blank lines between the ranges as they are
listed.

- To list a specified number of lines, starting at a specified
line number, type

List <first line>-<line count>

Reference Section Page 39

and press RETURN. <line count> must be smaller than <first
line>, otherwise the Editor will recognize it as a <last line>.
The listing will start <first line> and continue for <line
count> lines.

To interrupt the listing at any point, press the SPACE bar. To continue
the listing after interrupting it, press any key except CONTROL-C. If
you press the SPACE bar again, the Editor will display one line and stop
again. Thus you can step through the text buffer, examining one line at
a time. You can cancel the listing at any time by typing CONTROL-C; the
Editor returns you to the Command Level.

The List command causes the Editor to display control characters as

inverse-video characters on the screen. If your system cannot display
lowercase letters, they are displayed instead as punctuation symbols.

Repeating a List Command

The Editor always remembers the line numbers specified with the previous
List command. To repeat the previous listing, using the relative line
numbers used with the previous List command, press CONTROL-R and then
press RETURN. The Editor displays the lines of text as if you had
completely retyped the previous List command. Note however, that if you
have added or removed lines of text since the previous List command, the
content of the listed lines will be different from before.

Printing Lines of Text

To display lines of text without relative line numbers, type
Print <first line>-<last line>

and press RETURN. The Editor displays the specified text, just as with
the List command, but without line numbers. The control characters that
the Editor displays in inverse video when you use the List command are
sent to the screen as control characters. This operation allows you to
insert control characters into a file to activate any screen—control
features that you may have in your 8f-column text card.

By the Way: You can print or list your edit buffer to a
printer using the PTRON and PTROFF commands, which are
described in the section "Using a Printer With the Editor."

Page 40 Chapter 2: The Editor

Viewing a Text File From Disk

You can view the contents of a text file directly from the disk, without
loading it into the edit buffer--even while you have another file in
the edit buffer(s).

This allows you to view a text file that is too large to fit in the edit
buffer, such as a listing file created by the Assembler. This command
does not format the text lines or print relative line numbers; its
primary purpose is to print large listing files to the printer, as
described in the section "Using a Printer With the Editor."

To view the contents of a text file (called an ASCII file by Pascal
users), type

TYPE <pathname>
and press RETURN. Lines and control characters from the specified file
are sent directly to the display screen. As with the LIST command, you
can use the SPACE bar to interrupt or single-step the listing, or use
CONTROL~C to cancel the listing.
The TYPE command does not change the current contents of the edit
buffer(s).
Changing Text Within a Line

This section discusses the Find, Change, and Edit commands, which you
use to find and revise text lines that are already in the text buffer.

Searching Text

To search through the entire text buffer for a particular word or
character string, type

Find .string.

where string is the word or character string that you want the Editor to
search for. This search string must be enclosed by two punctuation
characters that do not also occur in the string itself. The example
above uses periods, but any punctuation character other than dash or
comma can be used. The Editor finds and lists all lines that contain
the search string. The Editor lists each line no more than once, no
matter how many times the search string occurs within that line.

You can limit the search by specifying on which line the search is to
start, or end, or both:

Find begin#-end# .string.

Reference Section Page 41

If you specify both a starting and ending line number, you must separate
them with a hyphen. If you specify a starting line number, but do not
type a hyphen, only the one line will be searched.

To specify a wild—card character within the search string, press
CONTROL-A. A wild-card character allows you to search for any of a set
of similar character strings that may differ in one or more characters.
(A wild card is a character that, for the purpose of a search, matches
any other character.)

For example, if you type
F .TEST.
and press CONTROL-A, the Editor searches the entire text and lists any

lines that start with TEST and end with any other character: TEST1,
TESTX, etc.

Search and Replace

To substitute a new character string for some or all occurrences of an
old character string in the text buffer, type:

Change [begin#[-end#]] .<oldstr>.<newstr>.
and press RETURN. The Editor searches the text buffer for occurrences
of the search string <oldstr>, and replaces all occurrences with the
replacement string <mewstr>. You can use any punctuation character

except a dash or comma in place of the periods in the above example.

As with Find, you can limit the search by specifying on which line the
search is to start, or end, or both, by typing:

Change begin#-end# .oldstr.newstr.

I1f a starting line number is specified, but no hyphen is typed, only the
one line will be searched.

When it receives a Change command, the Editor asks
ALL OR SOME (A/S)

To indicate that you wish to change all occurrences of the search
string, type A. To change only some of these occurrences, type S.

If you type S, the Editor displays the line containing the first
occurrence of the search string, as it would look after the change is
made, and asks

Y/N

Page 42 Chapter 2: The Editor

If you want the Editor to replace the original line with the changed
line as it is displayed, type Y or y. If you don't want the Editor to
make the change on that specific line, type N or n. In either case, the
Editor then continues searching for another occurreunce of the search
string.

To reject the change, cancel all further changes, and return to the
Editor's Command Level, press CONTROL-C.

The Editor rejects with a beep any response other than those described.
To delete a certain character string from the file, '"change'" it to
nothing. For example, to remove all occurrences of the string JUNK

from the buffer, type:

C.JUNK. .

By the Way: Although the replacement string can contain
"nothing," the search string must contain at least one
character.

You can omit the trailing delimiting character following the
new string, as the Editor also recognizes RETURN as an end
of the string.

Like Find commands, Change commands can contain CONTROL-A
used as a wild card in a search string. Using a wild card,
you can change several similar, but not ideuntical, character
strings into the same new string.

Changing the Command Delimiter

To the Editor, the colon (:) is the command delimiter that separates
Editor commands. Do not not use a colon in a search string, unless you
first change the Editor's command delimiter to some other character.
(The colon is not commonly used in assembly-language programs, so this
is not something you'll have to do often.)

To change the Editor's command delimiter, type
SET Delim .xxx.

~

and press RETURN, The delimiter can be set to [,], \, =, or .

Reference Section Page 43

Entering Edit Mode

The Change command described above is useful for making identical
changes to several different lines of text. To make individual changes
that will be different for each line, use the Editor's Edit mode. For
example, if you entered some assembler source lines without comments,
you might want to go back and add individual comments to a group of
lines or to all the lines containing a specific identifier.

Here are three ways to enter Edit mode.
- To enter Edit mode, with access to the entire buffer, type
Edit
and press RETURN.,

- To edit a specific part of the buffer, specify a starting line
number, or both starting and ending line numbers, type

Edit beginff-end#

If both starting and ending line numbers are specified, they
must be separated by a hyphen.

- To edit only those lines that contain a specified search
string, type

Edit begin#-end#.<string>.
You can specify a search string for the entire buffer or for a

range of lines. You can also use CONTROL-A as a wild card in
the search string.

Character Editing With Edit Mode

Once you are in Edit mode, the Editor displays the first line that you
can edit, with the cursor on the first character. You can use

LEFT ARROW and RIGHT ARROW to move the cursor to the left or right along
the line. Using other control keys, you can replace, insert, or delete
characters, seeing your changes immediately on the screen. The
resulting line may be either shorter or longer than the original line.

To make changes in a text line, first use the arrow keys to place the
cursor over the character that you want to change.

- To replace the character, type a new character over the old
one.

Page 44 Chapter 2: The Editor

- To delete a character, press CONTROL-D.

- To insert characters before the cursor position, type CONTROL-I
and type the additiomal characters. Signal the end of the
insertion by pressing an arrow key, any control character other
than CONTROL-V, or RETURN.

Control Characters: If you wish to put a control character
on the line you are editing, precede it with a CONTROL-V
(verbatim). If you don't do this, the Editor will beep in
protest.

The Editor always highlights control characters by
displaying them in inverse video. Typically, you will not
want to use control characters in your files, because the
Assembler does not accept them in assembly~language source
files.

If your system requires them, you can type lowercase characters while in
Edit mode, if you enable this feature before entering Edit mode.
CONTROL-E and CONTROL-W can be used to enable and disable lowercase. If
you have lowercase characters in your text, they will be shown in
inverse video when you place the cursor over them in Edit mode.

When you position the cursor over a tab character (normally a space),
the cursor will jump over the empty space caused by the tab character.
If you insert characters before a tab character, this “tabbing gap" will
gradually be filled in as you type more characters. If you replace the
tab character with another character, the line will jump to the left as
the gap is closed.

To jump quickly around the edit line, type CONTROL-F followed by another
character. The cursor then moves to the right, to the next occurrence
of the specified character. (If the specified character is not found on
the edit line, the cursor does not move.)

After making changes on the edit line, you may decide to restore it to
its original form and try editing it again. To do this, type CONTROL-R.

If you have inserted some text and you want to save only the first part
of the line that you have edited, place the cursor to the right of the
text that you want to save, and press CONTROL-T (truncate). The Editor
saves only the text to the left of the cursor.

If a newly displayed edit line needs no editing, or when your newly
edited line is exactly as you want it, press RETURN. The Editor places
the edited line back in its proper place in the text buffer, and

Reference Section Page 45

displays the next line for editing. When you have edited all of the
lines that you specified in the Edit command, the Editor returns you to
the Command Level.

To cancel Edit mode at any time and return to the Editor's command
level, type CONTROL-X. The current edit line remains unchanged in the
buffer.

Table 2-1 summarizes the keys and key combinations used in Edit mode.

Table 2-1. Summary of Edit Mode Keys

To Do This: Use This Key:
Move cursor left one character LEFT ARROW

Move cursor right one character RIGHT ARROW
Delete one character CONTROL-D

Insert characters at this position CONTROL-I
Replace a character any non-control character
Put control character in text CONTROL-V, any character
(VERBATIM)

Restore the original line CONTROL-R

Find a specified character in

the line and move the cursor there CONTROL-F, any character
Save the line as is 1s on the screen RETURN

Truncate the line at cursor
and save in buffer CONTROL-T

Cancel Edit mode,
return to Command Level CONTROL-X

Page 46 Chapter 2: The Editor

Editing Two Files At Once

While editing an assembly-language source file, you may wish to check
the contents of another source file, or make changes to another file,
without saving and reloading your current edit file. 1In effect, you
want to edit two files simultaneously. This is particularly important
if you are working on a single program that spans multiple files.

You must first split the text buffer into two parts. If there is enough
room in the two resulting buffers, you can edit two text files
concurrently, alternating between the two buffers by using the Swap
command.

If you are currently editing one text file, and you wish to edit a
second one concurrently, type

SWAP

and press RETURN. The Editor splits the current text buffer,
remembering the current pathname and file size. The portion of the
buffer that contains the current text file becomes text buffer #1. Text
buffer #2, consisting of whatever empty space there was in the original
buffer, becomes the new current text buffer.

You can now load, edit, list, save, or perform any other editing
operations on the contents of text buffer #2, while the Editor
preserves text buffer #1 in memory. To return to text buffer #1, type

SWAP

and press RETURN again. The Editor makes text buffer #1 the current
text buffer, preserving the contents of text buffer #2.

The Editor lets you know which text buffer you are currently editing by
displaying the buffer number (either 1 or 2) before the command prompt
on every command line.

If you try to use the ASM command to invoke the Assembler while you have
a second text buffer active, the editor displays the message MULTL
BUFFER ERROR. (The ASM command is discussed in Chapter 3.) You cannot
invoke the Assembler until you deactivate text buffer #2.

To deactivate the second text buffer and delete any data in it, type
KILL2

and press RETURN. It does not matter which buffer you are editing when
you do this. (To save the contents of this buffer first, type SAVE
while editing text buffer #2.)

If there is anything in the normal "non-split' edit buffer when you type
the ASM command, the Editor displays the message BUFFER ERROR. To save

Reference Section Page 47

the contents of the normal edit buffer, use the SAVE command before
clearing the edit buffer.

As an alternative, you can transfer the contents of text buffer #2 into
text buffer #1, and then deactivate the split—buffer mode.

- Type the NEW command while editing text buffer #l. This clears
text buffer #1.

- Type the SWAP command to activate the contents of text
buffer #2. If text buffer #1 is empty when you type the SWAP
command, the Editor will deactivate the split-buffer mode and
will treat the old contents of text buffer #2 as the new
contents of the single remaining text buffer.

Altering the Display

The commands discussed in this section control various display features
of the Editor. These commands do not alter the contents of the text
buffer in any way.

Setting Tabs

When you first run the Editor program, the tabs are set for standard
65¢2 assembly-language source files (the tab character is SPACE, and
tabs are set at column 16, 22, and 36). If you are using the Editor to
create other types of text files, you may want to change these
parameters.

To change the tabs in the Editor, type
Tabs [tabcol [,tabcol [,tabcol [...]]]1] [.<tabchar>.]

and press RETURN. You can specify up to 1§ tab positions, in ascending
order and separated by commas. If you type a delimiting character
(shown as a period in the example above) followed by another single
character and the delimiting character, the Editor will take this single
character as the new tab character. If you type the Tabs command
without any parameters, you will turn off the Editor's tabbing function.

Any character can be the tab character, but if you are editing
assembly-language source files, you must use SPACE.

The Editor recognizes tab characters only in the first 4@ columns of
text. The Editor ignores tab positions beyond column 39, although the
Assembler uses tab settings beyond column 4P to arrange its output
listings.

Page 48 Chapter 2: The Editor

The Editor uses the tab positions when it displays text lines in
response to a List, Print, or Edit command. Tabs are not active when
you are in Input mode (a space typed in Input mode appears as a single
space as it is typed). When you later List this line, however, the
Editor treats the space as a tab character, and it may be displayed as
several blanks on the screen.

Tabs also cause lines to look different when you Print them rather than
List them, as the Editor does not display a relative line number when
Printing. Under most conditions, the same line will appear with six
extra spaces between the first two fields when the line is Printed
rather than Listed.

Using a 40~ or 8f-Column Display

If you have an Apple IIe with the Apple Ile 8p-Column Text Card, or an
Apple II or Apple II Plus with an ALS Smarterm 8@-Column Text Card in
slot 3, the Editor automatically displays 80 columns, uppercase and
lowercase.

To switch from 8f-column to 4@-column display, type
COLumn 4§
and press RETURN.
To switch from 4@-column back to 8@~-column display, type
COLumn 8¢
and press RETURN.
1f your Apple II system has no 8¢-column display capability, the Editor

ignores these commands.

Truncating the Display

If you are using the Editor and a 4@-column display, you may want to
truncate the comment fields when you List or Print your source
statements. This lets the statements fit on a 4@-character line,
improving readability.

To command the Editor to truncate comments, type
TRuncON

and press RETURN. The Editor then displays only up to the first
space~-semicolon sequence (the marker for the beginning of comments).

Reference Section Page 49

This command in no way affects the actual text in the text buffer; it
only affects what the Editor displays when you type a List or Print
command. This feature does not affect the operation of the Find,
Change, or Edit commands.

To command the Editor to stop truncating comments, type
TRuncOFF
and press RETURN.

So that you won't accidentally lose your comments because they weren't
displayed, the Editor automatically suspends truncation of comments when
you are using Edit mode.

Leaving the Editor

There are three commands that allow you to leave the Editor command
level and enter another Command Level within your Apple II system:

- EXIT allows you to invoke some other ProDOS command
interpreter.

- END lets you easily start up (boot) another operating system
environment.

- MON allows you to enter the Apple II ROM-resident monitor. MON
also lets you return to the Editor Command Level, if you are
very careful what you do in the Apple Monitor.

Each of these methods is described below.

WARNING

The Editor does not automatically save your work; you must
use the SAVE command before you exit from the Editor if you
wish to preserve the program you have been editing.

Exiting to Another Command Interpreter

After finishing with the Editor/Assembler, you can go to another ProDOS
system program without having to start up again (reboot). Two versions
of the EXIT command allow this:

Page 50 Chapter 2: The Editor

- To exit to the standard ProDOS BASIC (named BASIC.SYSTEM), type
EXIT

and press RETURN., The FEditor attempts to load a system file
named BASIC.SYSTEM over the edit buffer, using the current
prefix. After loading the file, the Editor selects 4f-column
display mode and invokes the new command interpreter, which
then performs its normal startup sequence.

~ To exit to some other ProDOS command interpreter, type
EXIT <pathname>

and press RETURN. The FEditor attempts to load the system file
with the specified pathname, over the edit buffer using the
current prefix. If the file is found, the Editor selects
4@-column display mode and invokes the new command interpreter.
If the file is not found, the edit buffer remains intact and
one of these error messages is displayed: FILE NOT FOUND, PATH
NOT FOUND, DIRECTORY NOT FOUND, or BAD PATH/FILE NAME.

The pathname can be either complete or partial, so you can
invoke a new command interpreter from any online disk volume.

To restore the "startup prefix" before exiting, type
PFX /:EXIT <pathname>
and press RETURN. This restores the startup prefix and then

performs the EXIT command. If pathname is omitted,
BASIC.SYSTEM is executed from the startup directory.

Exiting to ROM-Resident BASIC

After you finish editing a program and save it, you can return to the
ROM-resident BASIC Command Level (immediate mode) by typing :

END

and pressing RETURN, The Editor exits to BASIC--none of the text that
you have been editing is saved. No new ProDOS command interpreter is
loaded and you will not be able to execute any ProDOS commands from
BASIC. The END command is normally used only to go from the ProDOS
Editor/Assembler to another Apple 11 operating system such as DOS 3.3 or
UCSD Pascal. To continue using ProDOS with another ProDOS command
interpreter, refer to the EXIT command described above.

Reference Section Page 51

WARNING

The Editor does not automatically save your work; you must
use the SAVE command before you exit from the Editor if you
wish to preserve the program you have been editing.

Entering the Monitor

The MONitor command is a tool for the experienced Apple programmer.
See the Apple II or Apple IIe Reference Manual for details.

To exit from the Editor and enter the Monitor, type
MON

and press RETURN. You can now use any of the Monitor commands. If

you plan to return later to the Editor, do not disturb any of the memory
areas (see Appendix H) used by ProDOS or "the Editor/Assembler. Note
also that if you enter BASIC from the Monitor, you will destroy memory
areas used by the Editor/Assembler.

To return to the Editor Command Level from the Monitor, press CONTROL-Y
and RETURN.,

Identifying the Absolute Location of Text in Memory

When using the Apple Monitor to manipulate text from the text buffer,
you may sometimes need to know the absolute location in memory of a
particular text line. To find the location from the Editor command
level, type

Where <line#>

and press RETURN. The Editor then displays the absolute memory address
of the first character of the specified line of text.

To learn the current memory address of the beginning of the text buffer,
type

Where 1

and press RETURN. The Editor will normally respond with

Page 52 Chapter 2: The Editor

=5801

(equivalent to decimal 2(49), the normal starting location of the
Editor's text buffer.

Loading and Saving Non-Text Files

The Editor provides four commands that allow you to load non-text files
(such as BINary) into the Edit buffer and then to save them with
different names on different disks.

The BLOAD and BSAVE commands let you load binary files from disk into
the edit buffer, and then save them from the buffer back to disk. The
XLOAD and XSAVE commands let you do the same with other types of
non—-text files.

For example, you could move the three files of the Editor/Assembler
system itself from the ProD0S Assembler Tools disk to a ProFile hard
disk.

If you are not yet familiar with the concepts of binary data files,
you should read the chapter on Binary Files in BASIC Programming
With ProDOS.

By the Way: The Editor does not provide for editing or
displaying these non-text files while they are in the
buffer. Do not use LIST while in the Editor, as this
displays garbage on the screen and can cause the system to
hang. Instead, use the MON command to access the Apple II
Monitor, which can be used to display and modify the files
in memory.

Loading Binary Files

To load a binary, or BIN, file from disk to a specific address in the
edit buffer, type

BLOAD pathname,A[S$]address

and press RETURN. Use the optional $ only if the address is given as a
hexadecimal number. Omit the $ if the address is given as a decimal
number.

The address must fall within the limits of the current edit buffer, and

Reference Section Page 53

the entire binary file must fit between the specified address and the
current end of the edit buffer. If it does not fit, you will see the
message FILE TOO LARGE. Other errors that may occur are FILE TYPE
MISMATCH and the four pathname errors. The BLOAD command does not
support partial loading of a binary file into the edit buffer.

WARNING

The Editor does not warn you if you already have a text file
in the edit buffer that might be partially or totally
destroyed by BLOADing a file over the data already in the
edit buffer. You should SAVE your text file(s) to disk
before using the BLOAD or XLOAD commands.

You can protect the current text file from the BLOAD (but
not the XLOAD) command by using the SWAP command to split
the edit buffer., The BLOAD command can then load a binary
file only to edit buffer #2, protecting the text in

buffer #1.

Saving Binary Files

To save a binary file from the edit buffer or other memory to disk, type
BSAVE pathname,A[$}address,L[$]length

and press RETURN. The specified pathname is used to create or write
over a binary file with <length> bytes of data from memory, beginning at
the specified address. The binary file's load address is set into the
file's directory entry from the specified address.

If you use the pathname to an existing file of some type other than
binary, the error message FILE TYPE MISMATCH is displayed, nothing is
saved, and the original file remains unchanged.

The BSAVE command saves from any 16-bit address or with any 16-bit
length, but if the binary file already exists when the BSAVE command is
given, the original file must be smaller than the unsplit edit buffer.
If the original file is not smaller than the unsplit edit buffer, the
FILE SIZE MISMATCH error occurs. Avoid this problem by DELETEing the
existing file before BSAVEing a binary file that is larger than the edit
buffer.

Page 54 Chapter 2: The Editor

WARNING

Do not attempt to save the device address space from $CHPP
through $CFFF. Even reading within this address range can
activate or deactivate hardware devices, such as Disk II
motors or the 8@-column peripheral card in use by the
Editor.

For more information on the problems and dangers of this
type of command, see the Introduction to BASIC Programming
With ProDOS.

Loading and Saving Other Data Files

The ProDOS operating system can share with Apple ITI's SOS operating
system numerous binary, memory image, program, code, and other types of
files. The ProDOS Editor/Assembler creates three types of binary files.
The Editor's XLOAD and XSAVE commands allow you to load and save most of
the ProDOS and SOS file types while automatically preserving the file's
specific filetype, access, and auxtype information.

The XLOAD and XSAVE commands operate correctly only on contiguous
sequential files that will fit within the Editor's edit buffer. These
commands do not function correctly for random—access or sparse files of
any type.

WARNING

If the files you XLOAD and XSAVE are sparse files, the
Editor's XLOAD and XSAVE commands will attempt to operate on
this type of file and give no warning that incorrect results
have been generated.

This problem is not normally significant because most sparse
or random—access files have such large end-of-file mark
values that they do not fit within the edit buffer. 1If a
small sparse file is XLOADed, it is converted into a
sequential file when it is XSAVED; the missing (sparse)
blocks are back-filled with binary zeros.

The XLOAD command must always precede the XSAVE command.
This rule is enforced by the XSAVE command, which will not
operate if the proper internal control information has not
been created by the XLOAD command before the XSAVE command
is issued.

Reference Section Page 55

SAVE your text file before using XLOAD and XSAVE. The text
file is destroyed if the XLOAD command reads a non-text file
into the edit buffer.

To load a sequential file into the edit buffer, type
XLOAD Pathname[,A[$]address]

and press RETURN. The Editor attempts to find a file with the specified
pathname and examine its directory entry. If the entire file plus the
directory information can fit within the edit buffer, the entire file
and its filetype, access, and auxtype data are loaded. Otherwise, the
error message FILE TOO LARGE appears.

If the load address (optional) is specified, the file data is loaded,
starting at that address. The directory information is always placed at
the beginning of the edit buffer.

The XLOAD command cannot read the four file types UNK, BAD, TXT, and
DIR. If such a read is attempted, the message FILE TYPE MISMATCH
appears. The LOAD and SAVE commands can be used for ordinary TXT files.

The four directory items that are saved along with the file's data are
placed near the beginning of the edit buffer, just before the beginning
of the data. The exact contents of these four data items can be
displayed with the FILE command.

When you load a file into the buffer with the XLOAD command, the first
two bytes of the edit buffer are set to binary zeros, indicating that
the edit buffer contains non-text data. The FILE command examines these
two bytes; when they are zero it interprets the next four bytes as the
file's FILETYPE, ACCESS, and AUXTYPE. (The file consists of a six-byte
header followed by data.) FILE displays three extra lines with this
information after an XLOAD command. The NEW and LOAD commands clear the
two zero flag-bytes created by the XLOAD command,

To save a sequential file from the edit buffer, type
XSAVE pathname [,A[$]address [,L{$]length]]

and press RETURN. The Editor attempts to save the specified sequential
file from the edit buffer. The file's length is determined by the
current edit buffer size, set by the previous XLOAD command, unless the
_optional address and length are specified. The address specifies the
beginning of the memory area to be saved. If either length or address
is specified, the other must also be specified.

Page 56 Chapter 2: The Editor

WARNING

If the specified pathname refers to a file of the same name
that already exists, but has a different file type, the
message FILE TYPE MISMATCH appears. If a file of the same
type already exists, it is deleted and a new one is created
with the same name. No warning is given that this is

happening.

The directory information saved by XLOAD is used to create the directory
entry of the new file. The XSAVE command does not operate if the edit
buffer contains a text file; the XLOAD command must be executed before
the XSAVE command.

To move almost any sequential file (of 37K or less) of any filetype,
type

XLOAD <pathname>:XSAVE <pathname>

and press RETURN, Assuming the two pathnames are different, or have
different volume names, you can move a file without knowing anything
more about it than that it is sequential. The following are all
sequential files that can be moved in this manner: all UCSD Pascal code
files; Business BASIC, Applesoft BASIC, Integer BASIC, binary, and
relocatable program files; UCSD .SYSTEM files, the ProDOS SYS
interpreters, and SOS system files.

Managing Disk Directories

There are five directory management commands that let you manipulate the
files within root directories and subdirectories and create new
subdirectories on disk. These commands are similar to those with the
same names in ProDOS BASIC.

Creating a New Subdirectory

The purpose of the CREATE command is to create a subdirectory file
within which you can place other files. You cannot use this command to
create any other type of file. The SAVE, BSAVE, and XSAVE commands
create other types of files.

If you try to save files into a subdirectory that you have not yet
created, the message PATH NOT FOUND appears, but the data in the edit
buffer remains intact while you create the subdirectory and again save
the file,

Reference Section Page 57

To create a new subdirectory file, type

CREATE <pathname>
and press RETURN. A new subdirectory file is created and given the
specified pathname. This subdirectory initially holds up to twelve

files, but ProDOS will automatically extend the directory to accommodate
more files as you add them.

Renaming Files and Volumes

To change the name of an existing file or volume, type

RENAME <oldpathname,newpathname>
and press RETURN. The name is changed from <oldpathname> to
<{newpathname>., The new name must be in the same directory as the old

name. For moving a file from one directory to another, use the Editor's
L.OAD and SAVE commands.

You can also use this command to rename a root directory or volume
name. For example, you could rename your ProFile™ rigid disk volume

by typing
RENAME /PROFILE,/PRO
You can also rename a subdirectory file.
You cannot rename a file that is locked. See Locking Files and

Unlocking Files, below.

Deleting Files

To permanently remove a file from a disk directory, type
DELETE <pathname>
and press RETURN. ProDOS deletes the specified file and frees its disk

space for use by other files. The command must include the pathname to
an existing file; otherwise the message FILE NOT FOUND appears.

Locking Files

At times you will want to protect individual files from being
accidentally renamed, deleted, or altered. To lock a file, type

LOCK <pathname>

and press RETURN. This command changes the status flags in the

Page 58 Chapter 2: The Editor

directory entry for the specified pathname, preventing any changes to
the file until it is unlocked. When a file is locked, an asterisk
appears to the left of its filename in the catalog display.

Unlocking Files

Before deleting, renaming, or otherwise changing a locked file, you
must first unlock it by typing

UNLOCK <pathname>

and pressing RETURN. Any file can be unlocked except a volume directory
file. When a file is locked, an asterisk appears to the left of its
filename in the catalog display.

Using a Printer With the Editor

Three Editor commands allow you to direct the Editor's normal screen
output to a printer instead. You can print a CATALOG listing, search
the file for all occurrences of a string and print all the matching
lines, or print all of the text lines from the buffer. (The EDIT
command will not function correctly if the printer is on.)

First, use the PR# command (see below) to define the printer interface
card slot and optional printer initialization characters. Then use the
PTRON command to activate the printer.

After each Editor command line is typed from the keyboard, the printer
control flag, set by PTRON, causes the printer to be enabled in place of
the screen display. During execution of the command, all output
normally directed to the screen display is sent to the printer.

Setting Up the Printer

Before you use the printing commands, you must define the slot in which
the printer interface card resides, and define any initialization
characters your printer or its interface firmware may require.

To define the printer's slot, type

PR# n
and press RETURN. n represents the number (from 1 to 7) of the slot
that contains an intelligent printer interface card attached to a
printer. Printer interface cards are generally placed in slot 1.
If your printer and its interface firmware don't require any special

initialization, this is all you need to do before using the various
Editor commands.

Reference Section Page 59

If your printer or its interface firmware needs to be preset to a
special state before printing begins, you can define a string of up to
31 control or printable characters that will be sent to the printer
before the text file is printed.

To define the printer's slot and initialization characters, type
PR# n,{printer—-init-string>

and press RETURN. n represents the printer slot number. After the
comma are any characters (including control characters but not ESC)
required to initialize the printer.

For example,‘if you have an Apple Parallel Interface Card in slot 1 and
do not wish to echo the printed characters to the 4P-column screen
during printing, you would type

PR# 1,*N

and press RETURN. * represents a CONTROL-I character. This command
causes the FEditor to send a CONTROL-I and the letter N to the printer
before any text is sent, turning off the 4f-column screen echo of the
printed text. In addition, if your printer has formfeed control, you
could follow the letter N with a CONTROL-L, to ensure that your printout
begins at the top of a new page.

Activating the Printer

Once you have defined the printer slot with the PR# command, you must
then enable the printer output mode. Nothing happens when you enter
this command, except that the printer control flag is turned on.

The Editor Command Level restores the console display device after
executing each command. After each command is read in (either from the
keyboard, the command stack, or an Exec file), the printer control flag,
when it is on, activates the printer and executes the command. Any
Editor command, except EDIT, can send its output to the printer.

To enable the printer, type
PTRON
and press RETURN. This command can be included with other commands in

the same command line, separated by the command delimiter (normally a
colon).

Page 60 Chapter 2: The Editor

To disable printer output mode, use the PTROFF command. For example,
PTRON:CATALOG : PTROFF
activates the printer, prints the 8P-column format directory listing,

and deactivates the printer.

Printing Text Files

When there is a text file in the edit buffer and you have used the PR#
command to set up the printer, you can print all or some of the text
lines, without line numbers.

To print all the lines in the buffer, type
PTRON:PRINT : PTROFF
and press RETURN.
To begin and end printing at specified lines, type
PTRON:PRINT <start>-<end>:PTROFF
where <start> and <end>, separated by a hyphen, represent the first and
last lines to be printed. If —-<end> is omitted, only one line will be
printed.
To print from a specified line to the end, type
PTRON:PRINT <start>-:PTROFF
To print from the beginning to a specified line, type
PTRON:PRINT -<end>:PTROFF
The PRINT command prints the text lines with the tabs expanded according
to the current tab settings. Any control characters in the text lines

will be sent to the printer as control characters, possibly causing
various actions by the printer.

Note: To include the Editor's relative line numbers along
with the text lines, substitute LIST for PRINT in the
commands above. The lines in the text buffer are sent to
the printer in exactly the same way as the LIST command
would display them on the screen, except that control
characters appear as capital letters or punctuation
characters.

Reference Section Page 61

To terminate printing at any time, type CONTROL-C. To single-step or
pause the printing, just as you would if you were listing on the screen,
use the SPACE bar. To resume full-speed printing, press any key other
than CONTROL-C.

Printing Text Files Directly From Disk

To print the contents of a text file on disk, without first putting it
into the edit buffer, type

PTRON:TYPE <pathname>:PTROFF

and press RETURN., The file is read from the disk file, one line at a
time, and sent to the printer. To cause the printing to pause, press
SPACE. To cancel the printing, press CONTROL-C.

The primary purpose of the TYPE command is to print large listing files
generated on disk by the Assembler. The TYPE command prints exactly
what is in the text file, including control characters, without tab
expansion.

Automatic Command Execution

The EXEC command is used to execute an Exec file. An Exec file is a
sequential text file that consists entirely of commands to the Editor.
While the Exec file is executing, the Editor takes its commands from the
Exec file instead of from the keyboard. Exec files can contain any of
the Editor commands that you can type. They cannot contain Input mode
text lines or Edit command control or input characters.

The various uses of EXECs are not always obvious, but the most common
use is for setting up standard command sequences for invoking the
Assembler. Multiple assemblies can easily be executed in sequence, for
construction of complex software products, such as this 4-section
2-overlay Editor/Assembler.

EXECs are also useful for moving groups of files from one directory or
disk to another. Since an Exec can enter Input mode or Edit mode and
temporarily accept keyboard input that is placed in the edit buffer, you
can create some very useful sequences.

Because Exec files are externally identical to all other Editor text
files, you might want to name them to make them stand out in your
directories. One way is to begin all Exec filenames with the letter X.
Another is to end them all with letters ".EXEC".

Page 62 Chapter 2: The Editor

Creating Exec Files

You can use the Editor to create Exec files, just as you use it to
create text files. To create a new Exec file, perform these three
steps:

- Save anything you might be editing.
- Use the NEW command to clear the buffer.
- Use the Add command to enter Input mode.

From Input mode, you can enter lines of text that contain Editor
commands. You can include LOAD, SAVE, ASM, RENAME, DELETE, BLOAD,
BSAVE, or almost any other Editor command. When you have created your
file of Editor commands, terminate Input mode in the usual way and then
SAVE the Exec file to disk. You can LIST, PRINT, change, or edit the
Exec just as you can any other text file.

Do not use the CREATE command in an Exec file, because it does not work
correctly on a repeated basis. Do not use the END, EXIT, or MON
commands, except at the end of an Exec. Returning from the Apple II
monitor to the Editor terminates an active Exec.

An Exec file can contain the EXEC command once. It must be the last
command in the file, because when it is executed, the Exec file it came
from will be closed and the new one opened. Avoid a loop in which an
Exec file calls itself-~it will never terminate as long as all the
commands can be successfully executed.

If you put an Add, Insert, or Edit command in an Exec, the Exec will
stop reading from the Exec until you terminate Input mode or Edit mode
in the usual way, from the keyboard. Once you do this, the Exec resumes
automatic command execution from the Exec file.

Note: Whenever an Editor command error occurs, the active
Exec file is terminated. Subsequent commands in the Exec
are not executed., This termination prevents attempts to
continue execution in spite of a missing file, misspelled
pathname, or other problem.

Reference Section Page 63

Fxecuting Exec Files

The EXEC command causes the Editor to take commands from a sequential
text file instead of from the keyboard. To invoke an Exec file, type

EXEC <pathname>

and press RETURN., If the file having the specified pathname is not a
text file, the message FILE TYPE MISMATCH appears.

WARNING

Before using an Exec, be sure you know exactly what it is
going to do. Invoking an Exec file alters the contents of
the edit buffer if the Exec contains commands that modify
the edit buffer. The system does not warn you that you have
a text file already in the edit buffer that may be destroyed
or modified by the commands executed from within the Exec
file.

Editor execs are always executed from the beginning. The progress of an
Exec can be monitored during execution. As the commands are read, they
are echocd on the console display, preceded in column 1 by a +.

WARNING

After an Exec file has been started, there is no direct way
to stop it. You can remove, at your own risk, some
resource, causing an error that will terminate the Exec.
Opening the door of a disk drive can serve this purpose, but
be certain that the Exec is not trying to write on the disk
at the time.

The EDASM.AUTOST Startup Exec

After loading the EDASM.ED file and initializing for normal operation,
the EDASM command interpreter (EDASM) searches the startup volume
directory for a text file named EDASM.AUTOST. 1If a text file with this
name 1s found, it is assumed to be an EDASM Exec file containing EDASM
commands. The presence of the file in the directory causes the
automatic invocation of this Exec as if you had typed the command

Page 64 Chapter 2: The Editor

FXEC EDASM.AUTOST

and pressed RETURN, If this file is not found in the startup directory,
the first command is requested from the keyboard in the normal manner.
When the commands from the AUTOST Exec are completed, Command Level
input reverts to the keyboard.

Using Execs With the Assembler

You can use an Exec file to invoke the Assembler. This procedure
commonly consists of clearing the edit buffer, setting the tabs for the
assembly listing, selecting the printer slot or disk listing output,
then invoking the ASM command, combining multiple object files into
executable modules, and possibly sending a listing file from disk to
printer.

The ASM command must not share a text line with another command. This
is true whether the ASM command is entered from the keyboard or from an
Fxec file. The return path from the Assembler to the Editor clears the
multiple command flag and displays the current ProDOS date and time on
the console. This provides an accurate method of timing the speed of
the Assembler.

Page 65

Chapter 3

The 65$2 Assembler

Page 66

Chapter 3

The 6502 Assembler

69 About This Chapter
79 Overview
71 Tutorial

71 Getting Started

72 Assembling Your Program

75 Using the Assembler

75 Invoking the Assembler

76 Suppressing the Generation of the Object File
76 Error Recovery

76 Stopping the Assembly

77 The ProDOS DATE and TIME

77 Generating Assembly Listings

77 Selecting a Printer to Receive Assembly Listings
79 Selecting a Disk File to Receive Assembly Listings
80 Interpreting an Assembly Listing

82 Listing TAB Control

82 Interrupting the Listing

83 Turning Off the Assembly Listing

83 The Symbol Table Listing

85 Assembly Language Source Files

85 The Syntax of Assembly Statements

86 The Label Field

87 The Mnemonic Field

87 The Operand Field

91 The Comment Field

91 Giving Directions to the Assembler

92 Controlling the Overall Assembly

92 ORG (ORiGin)

94 SYS

94 DSECT (Dummy SECTion) and DEND (END DSECT)
96 O0BJ (OBJect)

97 REL (RELocatable)

97 X6502

98 PAUSE

99 Assigning Information

199 EQU (EQUate)

100 DEF (or ENTRY)

191 ZDEF (DEFine Zero Page)

Chapter 3:

191
192
192
192
193
183
193
194
185
105
165
106
106
196
196
198
199
199
149
119
111
111
111
113
114
114
114
114
115
115
117
118

The 6502 Assembler

EXTRN (EXTeRNal) or REF
ZXTRN or ZREF

Generating Data in Your Object Code

DFB or DB (Define Byte)

DW (Define Word)

DDB (Define Double Byte)
DS (Define Storage)

MSB (Most Significant Bit)
ASC (ASCII)

STR (STRing)

DCI

DATE

TIME

Controlling Conditional Assembly

DO, IFxx, ELSE, and FIN
FAIL

Controlling Source Files

CHN (CHaiN)
INCLUDE
SBUFSIZ and IBUFSIZ

Controlling Assembly Listings

PAGE

LST (LiSTing)
REP (REPeat)
CHR (CHaRacter)
SKP (SKiP)

SBTL (SuBTitLe)

Using Macros in Assembly-Language Programs
Invoking Macros in a Source File
The Macro Definition File

The &@ Parameter
The &X Parameter

Page 67

Page 68

Page 69

Chapter 3

The 65@#2 Assembler

About This Chapter

The 6592 Assembler in the ProDOS Assembler Tools enables you to program
your Apple II in assembly language.

You used the Editor to create assembly-language source files. Before
these can run on your Apple II, they must be translated into executable
object programs. That is where the Assembler comes in. The Assembler
can also help you to locate problems in your programs, by generating
assembly listings, error summaries, and symbol table listings to
accompany your programs.

This chapter is organized the same way as Chapter 2. It consists of
three parts:

— An overview of the Assembler.

— A brief tutorial on the use of the Assembler. This tutorial
takes up where the ome in Chapter 2 left off, leading you
through an assembly of the program source file that you
created.

- TFour detailed reference sections on the Assembler's features
and statements: Using the Assembler, Assembly Language Source
Files, Giving Directions to the Assembler, and Using Macros in
Assembly-Language Programs.

In addition, Appendix B is a summary of the 65@2 assembly-language
mnemonics and addressing syntax, and the Assembler directives that you
may use in writing your assembly-language programs.

Page 70 Chapter 3: The 6502 Assembler

Reminder: This chapter tells how to use the Assembler, but
does not teach how to program in 65f2 assembly language.
Several manuals on 6502 programming are listed in the
Preface, and you should be familiar with one of these books
before you continue reading this chapter.

Overview

The Assembler creates an executable object program by translating each
of the assembly-language statements in your program source file into an
executable opcode (machine-language operation code). Your
assembly-language statements can include any of the standard 6502
assembly-language mnemonics and addressing syntax.

Your source file can also contain Assembler directives, or instructions
to the Assembler itself. You can assemble very large 6502 programs by
chaining several source files together. These features are described in
this chapter.

The Assembler can create both Binary object programs and Relocatable
object programs.

- Binary programs can be run directly using the ProDOS BRUN
command. You can also generate ProDOS system programs that can
be executed with the ProDOS dash command.

- Relocatable programs are assembly-language programs that you
can load and run during the execution of a BASIC program.
Relocatable object programs are discussed later in this chapter
and in Chapter 5.

Tutorial Page 71

Tutorial

If you follow the steps in this brief tutorial, you will

~ Assemble the assembly-language source file you created in the
previous tutorial (Chapter 2)

- Store the resulting binary program on disk.
To use this tutorial, you need
- Your Apple II computer running the Editor/Assembler program

- The TESTPROGRAM text file that you created during the Editor
tutorial in the previous chapter.

Note: Chapter 4 contains a Tutorial that shows how to use
the Bugbyter program. To do that, you'll need an executable
binary program. It is recommended that you follow the steps
in this tutorial, if only to prepare the necessary file for
use with the later tutorial.

Getting Started

The Assembler is an integral part of the combined Editor/Assembler
program. You can invoke the Assembler only from the Editor command
level, but the Assembler is not resident in the computer's memory until
you need to use it.

If your Apple II is not yet running the Editor/Assembler, follow the
steps in the Getting Started section in the tutorial in Chapter 2. This
tells how to run the Editor/Assembler and how to use the Editor command
level., Once you see the colon (:) prompt character at the left margin
of your screen, you are at the Editor Command Level.

To make sure that your assembly-language source program is on the ProDOS
Assembler Tools disk:

1. Type the Editor's Catalog command
CAT

and press RETURN.

Page 72 Chapter 3: The 6502 Assembler

The Editor displays the directory of the current disk, which
should include your program as a Text file named TESTPROGRAM.

If Your Program is Not in the Directory: Be sure you are
reading the contents of the Assembler Tools disk. TIf your
program is not on this disk, you may not have completed the
tutorial in Chapter 2. Return to Chapter 2 and complete the
tutorial, creating an assembly-language program and storing
it on the disk. Once you have done that, return to this
tutorial to assemble your program.

Assembling Your Program

Because the Assembler overwrites the Editor's text buffer as it
assembles your program, you must save any edited text and clear the
Fditor's text buffer before you use the Assembler. Do this by using the
SAVE and NEW commands, described in Chapter 2.

Note: If you do not clear the Editor's text buffer before
invoking the Assembler, the Assembler displays the message
BUFFER ERROR.

1. From the Editor Command Level (after the colon prompt), type
ASM TESTPROGRAM
and press RETURN.
The Assembler program first reads your program source file
(TESTPROGRAM) from the current disk, then assembles it,
producing a Binary file with the name TESTPROGRAM.#.
The Assembler also generates a complete assembly listing of

your program on your Apple IT video screen. This assembly
listing should look like this:

Tutorial Page 73

SOURCE FILE: TESTPROGRAM
————— NEXT OBJECT FILE NAME IS TESTPROGRAM.§

1000 1999 1 ORG $10p¢@

1909: A9 CO 2 START LDY #3CP

1002:A2 90 3 LDX #9

1094:20 ¢D 19 4 LOOP JSR STORE

1907 :E8 5 INX

1998:E0 @5 6 cpx #5

1PPA:DP F8 1PP4 7 BNE LOOP
190C: 60 8 RTS

14pD:C8 9 STORE INY

100E:98 19 TYA

199F:9D 09 11 11 STA BUFF,X
1912:68 12 RTS

1413: @gED 13 DS $ED, $00

1190: PPBA 14 BUFF DS 10,500
11¢¢ BUFF 1994 LOOP 21099 START 199D STORE

*% SUCCESSFUL ASSEMBLY := NO ERRORS

** ASSEMBLER CREATED ON 1$-JAN-83 REL-#3
%% TOTAL LINES ASSEMBLED 14

#*#% FREE SPACE PAGE COUNT 79

By the Way: If your Apple II has no 8f-column text card,
you'll see only the first 4p columns of this listing.

pidn't work? If you made any typing mistakes when you typed
the ASM command, the Editor/Assembler flashes an error
message and returns you to the Editor Command Level. Type
the ASM command again. Appendix D explains any error
messages that you might see.

If the Assembler found any errors in your TESTPROGRAM source
file during its assembly, you probably made a typing mistake
when you created this file during the Editor tutorial. Go

back to the Editor tutorial now and make sure that your file

Page 74 Chapter 3: The 6502 Assembler

matches the text shown in the tutorial. If not, use the
Editor to fix any mistakes before you try again to assemble
your program.

2. To verify that your new binary object file has been stored on
disk, type

CAT
and press RETURN.

The Editor shows the directory of your disk. Among the files
on this disk you should see a Binary file with the name

TESTPROGRAM. ®.

/EDASM

NAME TYPE BLOCKS MODIFIED
PRODOS SYS 29 2¢-0CT-83
EDASM. SYSTEM SYS 8 2p-0CT-83
EDASM.ED BIN 16 2p-0CT-83
EDASM. ASM BIN 28 2¢-0CT-83
BASIC.SYSTEM BIN 15 2@-0CT-83
TESTPROGRAM TXT 1 dd-mmm-83
TESTPROGRAM.® BIN 1 dd-mmm-83

You have now finished the Tutorial on the use of the Assembler. You
have learned how to use the Assembler to do three things:

~ Assemble your assembly-language source file and produce an
executable binary program.

- Store the binary program on disk.
- Generate an assembly listing of your program.
The TESTPROGRAM.P binary (BIN) file you have created will be used in the

next chapter, when you learn how to test and debug your
assembly-language programs.

Using the Assembler Page 75

Using the Assembler

The preceding tutorial demonstrated one simple use of the Assembler:
assembling a program source file from disk and storing the resulting
object program on disk. This is the most common of the Assembler's
several uses. The rest of this chapter describes each of these uses in
detail.

Invoking the Assembler

To invoke the Assembler from the Editor Command Level, type the ASM
command (using the following syntax):

ASM srcpathname[,objpathname]

srcpathname represents the pathname to the source file, and it must be
the complete or partial pathname to a valid assembly-language source
file.

objpathname represents the optional pathname (either complete or
partial) to the object file. This is the pathname you wish give the
output object file created by the Assembler. If you use a partial
pathname, the current prefix is applied in the usual manner. (The
current prefix applies to a partial pathname and is discussed in detail
in Chapter 2 under the heading "The Current Prefix.")

If you do not specify an objpathname, the Assembler creates one for you
by appending .@ to the end of the srcpathname. The source filename (the
portion of the pathname following the last slash) must be 13 or fewer
characters, rather then the normal 15. If you forget this restriction,
the assembly is cancelled, and the message ASSEMBLER PARAMETER ERROR IN
LINE @ is displayed.

You must specify a complete objpathname, beginning with a volume name,
if you want the object file to be stored in a directory other than the
one containing the source file. The disk volume for such an objpathname
must be online; if it is not, the Assembler will cancel.

Note: Before invoking the Assembler, be sure the
Editor/Assembler system files are still accessible. The
Editor must load the Assembler program from disk before it
can assemble your programs. The Editor remembers the
startup prefix and uses it to load EDASM.ASM and, after the
assembly, to reload EDASM.ED.

Page 76 Chapter 3: The 6502 Assembler

Suppressing the Generation of the Object File

When you are assembling your program simply to get a listing or to check
for errors, you can speed up the assembly process considerably by
suppressing the generation of your object file on disk.

To select this option, type @ in place of the object file name when you
type the ASM command. For example,

ASM TESTPROGRAM, @

causes the Assembler to assemble the TESTPROGRAM file (found via the
current prefix), generating assembly and symbol table listings, but
not producing an object file on disk. The Assembler assembles your
source program in the normal manner but does not write the resulting
object code to disk. You can therefore have the Assembler store your
object code directly into memory by using @ in the ASM command in
conjunction with an OBJ directive in your source progranm. This feature
of the Assembler is discussed later in this chapter.

Error Recovery

If you make any syntax errors when you type the ASM command, the
Editor/Assembler displays an error message and places you back in the
Editor Command Level.

1f the Assembler cannot locate the source file you specify, or some
other ProDOS error occurs, the Assembler cancels the assembly, displays
the message ASSEMBLY ABORTED. PRESS RETURN, returns you to the Editor
Command Level, and waits for you to respond by pressing RETURN.

As the Assembler performs its assembly of your program source file, it
displays individual error messages for any errors it finds. These
messages appear either on your screen or on your printer, depending on
where you have directed your assembly listings. (Appendix D explains
the ProDOS errors that may occur during the operation of the Assembler.)

Stopping the Assembly

To stop the Assembler at any time during an assembly, press CONTROL-C.
This causes the Assembler to close all open files and free any ProDOS
buffers that are in use, and then return you to the Editor command
level. The Assembler does not remove any of the output files that it
may have generated on your output disk. To remove these files, you can
use the DELETE command from the Editor Command Level.

Under some circumstances, pressing CONTROL-C to stop an assembly can
inhibit the Assembler. This can occur if the Assembler is directing
output to a printer that is not online, for example. If this happens,

Using the Assembler Page 77

press RESET, pause, and press RESET again. The Assembler terminates
everything and returns you to the Editor Command Level,

WARNING

Do not press RESET while the light on any disk drive is
lighted, indicating that the drive is being accessed. If
the Assembler is writing to the disk when you press RESET,
you could destroy access to your entire disk.

The ProDOS DATE and TIME

When you type the ASM command, the Editor calls ProDOS to set the date
and time from your clock card, if you have one. The date and time are
converted into strings and passed to the Assembler. If you have no
clock card, the date you entered at startup is passed to the Assembler,
along with whatever time was previously set.

The Assembler uses the data from the clock card when you use the DATE
and TIME directives in your program source file. These directives are
described later in this chapter, under the heading "Controlling Assembly
Listings." These directives allow you to mark your object files so that
you can later associate each of your printed assembly listings with a
particular object file, even if you assembled the same source program
several times during a single programming session. The SBTL directive
allows you to title each page of your assembly listing with the same
date and time.

Generating Assembly Listings
Instead of displaying assembly listings on a video monitor, you can

direct them to a printer or to a disk file for printing later. You can
also control what parts of your assembly are printed in your listings.

Selecting a Printer to Receive Assembly Listings

Before invoking the Assembler from the Editor command level, you may
wish to direct your assembly listings to a printer or other non-disk
device output device. If you don't specify otherwise, the Assembler
displays listings on the video screen.

To select a printer or other device to receive your assembly listings,
type the PR# command from the Editor command level. This command has
the following syntax:

Page 78 Chapter 3: The 6502 Assembler

PR# slot# [, [L#] [P#] [device-control-string]]

slot# specifies the interface card slot controlling the output device
to which your listings will be directed during the current
Editor/Assembler session. If slot# is @, your Assembler listings are
directed to the 4@-column video screen.

The three optional parameters that you can specify with the PR# command
are represented by L#, P#, and device-control-string. Each of these is

described below.

By the Way: The Editor/Assembler stores this data and uses
it for the remainder of your current session. When you
begin a new session with the ProDOS Editor/Assembler, you
must again specify where to direct your listings. A most
convenient way to invoke the Assembler is to include this
command along with the Editor's ASM command in a ProD0OS EXEC
file. You can then invoke the Assembler by executing the
ProDOS EXEC command from the Editor command level.

If your Apple I1 system has an 8f-column text card in slot 3, the Editor
automatically selects slot 3 for the video screen, so you don't need to
issue a PR#3 command to receive an 8f-column video display. To
discontinue assembly to a printer, use PR#® or PR#3.

The Assembler can direct your assembly listings to only one output
device. It is possible that the output device you select may echo what
it receives to the display screen, but this is up to the device and how
you use it. The Apple printer interface cards cannot print a listing
that is wider than 4P columns and simultaneously echo to a 4@-column
screen.

1L# The optional logical-page length parameter specifies the number
of lines the Assembler should print on a page. Unless you specify
otherwise, the Assembler prints 6§ lines per page. To specify a
different logical-page length, type L followed by a two-digit number.

P# The optional physical-page length parameter specifies the number

of lines from one top-of-form to the next. To specify the physical-page
length, type P followed by a two-digit aumber. Tf you used a SBTL
directive in your source file and you do not specify a physical-page
length, the Assembler outputs a form—feed character after each page.

device-control-string The optional device-control-string is any
sequence of control characters needed to initialize your printing device
before printing the Assembler's output listing. This
device-control-string may not exceed 32 characters.

Using the Assembler Page 79

For some Apple printer interface cards, this string typically consists
of the normal CONTROL-I, N sequence that turns off the display screen
and initializes the printer. Hold down the CONTROL key and press I,
then release both keys and press N.

For example, to direct all assembly listings generated during this
session to the printer in slot 1, with 54 lines per page, and 66 lines
per form, type:

PR#1, L54 P66 *N

where * represents CONTROL-I.

Selecting a Disk File to Receive Assembly Listings

With large-capacity disk devices, ProDOS supports the creation of text
files large enough to contain the listing output from your assemblies.
This option is not recommended for use with Apple II systems with
Disk II drives only.

By the Way: This section assumes that you have read the
previous section on directing a listing to a printer or
other device.

To direct your assembly listing to a disk file instead of a printer or
other device, you must know which slots contain disk countroller
interface cards. Use the PR# command with the following syntax:

PR# diskslot# [, [L#] [P#] [pathname]]

The Assembler determines that the slot# you have selected is a
diskslot#. When the specified slot is that of a disk controller card,
the Assembler assumes you want a listing file created. The
device-control-string is assumed to be a ProDOS pathname instead of the
usual device initialization characters.

The optional logical and physical page sizes must be specified if the
printer that will later be used to print the listing file requires these
options. This can result in ambiguity, if a pathname starts with either
the letter L and two digits or the letter P and two digits. If your
listing filename begins with L or P, resolve the ambiguity by entering a
complete pathname that begins with a slash (/).

The pathname you supply may be a partial pathname, with the prefix

applying as usual, or a full pathname, using any online volume. The
pathname you select need not reside on the diskslot# you enter in the
PR# command. The diskslot# must select a mounted ProDOS disk device,

Page 80 Chapter 3: The 6502 Assembler

but the pathname can select that or any other online volume.

Selecting listing output to a file requires two extra buffers, reducing
symbol table space by 128p bytes. A very large assembly (one having a
FREE SPACE PAGE COUNT of less than 5 with output to a printer) cannot be
directed to a file.

A listing file consists of exactly the characters that would have been
sent to the printer. This includes many spaces and control characters.
You can edit this file, if it is small enough to fit in the edit buffer.
Attempting to LOAD a large listing results in the Editor error message
FILE TOO LARGE.

Interpreting an Assembly Listing

When you direct the listing to some device other than the video screen,
the Assembler assumes that at least 8 columns are available for the
listing. If your source lines and tabs are set to print beyond column
89, either your printer must wrap the lines or tolerate more than 8¢
columns of output from the Assembler.

If you use at least one SBTL directive, headers are printed on each page
of 1listing. The header consists of a title line followed by a blank
line, as shown in Figure 3-1.

Using the Assembler Page 81

Figure 3-1. A Typical Assembly

Listing

¢1 CMDINTRP COMMAND INTERPRETER 18-JUN-81 #@@P@1P PAGE 20
—-——— NEXT OBJECT FILE NAME IS OBJ

oCcPe: pcope 79 ORG $@CPP

BCop: DPP® 8¢ EDITOR EQU $DP@P

PCod: DP@® 81 ASSM EQU $D@P9 ;Bank 2

¢C¢¢! 83 hhkkkhkhkkhkrkkkhhkhkhkhhkhkkkhhkkkikkkk
gcop:4C 15 @C 84 COLD JMP TEXT :Hard startup
@ce3:4C 78 @C 85 JMP CTXT $SOFT START
#C15:A2 FF 94 TEXT LDX #S$FF

BC17:9A 95 TXS ;Force stack
¢$c18:2p 58 FC 96 JSR HOME

@C1B:AD 0P 97 LDY #0

¢C1D:B9 @B 12 98 SENDBANR LDA BANNER,Y

0C20:FP 96 @¢C28 99 BEQ BANREND

¢Cc22:2¢ ED FD 109 JSR COUT

$Cc25:C8 101 INY

@#C26:D@ F5 @CID 1@2 BNE SENDBANR

12¢8:20 24 3¢ 871 MINTABS DFB 32,36,48 ;minimum tabs
IZQB: 872 kkkhkhkhkhhkhkhkhkkrhkhkhhkhkhkhkhkrkhkhhhkhkhkhkhikk
12¢B: 873 LST ON

120B:8D 8D 8D 8D 874 BANNER DFB $8d,$8d,$8d,$8d,$8d,58d
1211:A¢ C5 C4 C9 875 ASC ! EDITOR/ASSEMBLER II'
1225:B1 B8 AD CA 876 DATE

The example in Figure 3-1 illustrates many of the features of the
Assembler's listing file format. The listing header contains the file
number at the left, followed by the first eight characters of the
pathname, and the optional title. On the right are the date, time, and
page number. Below the header is a blank line.

The Assembler prints each source statement, beginning with a four—-digit
hexadecimal number followed by a colon. This number is the value of the
Assembler's program counter when that line was assembled. Line 8¢ shows
the expression result field to the right of the PC field, typical of a
control directive.

Page 82 Chapter 3: The 6502 Assembler

The Assembler displays the message NEXT OBJECT ... when it encounters
an absolute ORG directive in your source program when the Assembler is
directing its object output to disk storage. Lines 84 through 1§22 show
how normal 6502 code is printed, with the branch target address to the
right of the branch object code.

Lines 871 through 876 show how data directives are printed, with the
NOGEN option in effect. The NOGEN option suppresses printing more than
one listing line for data directives that generate more than four bytes
of object output. Note that lowercase is legal input for the Assembler;
it is shifted to uppercase for internal use, but is printed as given in
the source.

Listing TAB Control

The Assembler listing is tabulated in the same way that the lines in the
Editor are displayed. The Assembler uses the Editor tab settings to
format the output listing if the first tab setting is 12 or more when
the ASM command is executed. It uses its minimum tab settings
otherwise. The minimum settings are equivalent to Editor tabs of 15,
19, and 31. The Assembler uses only the first three of the Editor tabs.
Large Editor tab settings cause listings to be shifted off the printed

page.

Interrupting the Listing

To cause the Assembler to pause when displaying or printing the assembly
listing, press the SPACE bar. This interrupts the Assembler output,
allowing you to view portions of the assembly listing. To restart the
assembly listing, type any character that is not a mode character to the
Assembler. Pressing the SPACE bar when the listing is being directed to
a listing file will suspend the Assembly, but nothing will be displayed
on the screen. The assembly resumes when you press some key other than
SPACE or ESC.

To single-step the listing, press the SPACE bar once for each line.

If you are viewing the assembly listing on a 4@-column video screen, you
can control a 4@-column window within the 8@~column listing. To move
the window one column toward the right edge of the listing, press

RIGHT ARROW. To move the window one column toward the left edge of the
listing press LEFT ARROW.

The arrow keys don't stop the listing, and they change the position of
the window only once for each assembler statement. If your keyboard has
auto-repeat keys, you can hold down an arrow key; otherwise you must
press it repeatedly until you come to the 4@-column window you want.
Error messages are always printed within the current 4f-column display
window.

Using the Assembler Page 83

Turning Off the Assembly Listing

The usual way to control which portions of your source program are
printed in the assembly listing is to use the Assembler's LST ON/OFF
directive in your program source file.

You can also control the listings from the keyboard, during the
assembly. Your keyboard commands override the current state of the LST
option until the next LST directive in your source program or until your
next command from the keyboard. Using these keyboard commands, you can
examine sections of the listing you turned off from within your source
program, or you can turn off the listing of sections that were to be
listed in your source program.

You would generally use these commands only when you are working on
large programs. For example, when you have changed a small portion of a
program, you may not want to list the entire program.

-~ To turn the listing ON, press CONTROL-O.

~ To turn the listing OFF, type CONTROL-N (N = Not listed)

By the Way: The Assembler may encounter a LST directive
within the source program that counteracts your most recent
CONTROL-N or CONTROL-0 command. To correct this, just
repeat the keyboard command.

The Symbol Table Listing

After generating an assembly listing, the Assembler normally produces a
symbol table listing. The symbol table listing can be sorted in either
alphabetical or symbol-value order.

The symbol table listing is optional. There are two ways to suppress
it:

- Cancel the assembly by pressing CONTROL-N.
- Use the LST NOASYM,NOVSYM directive in your source program.
To produce only the symbol table listing, use the LST OFF directive at

the beginning of your source file and a LST ASYM,VSYM at the end of your
source program.

Page 84 Chapter 3: The 6502 Assembler

When the Assembler prints the symbol table, it automatically adjusts the
width of the symbol table output for either a 4@-column screen or a
printer (assumed to be 8§ columns). The Assembler displays the table in
two columns on the screen and prints it in either four or six columns on
the printer, depending on the option you select with the LST directive.

Figure 3-2 is an example of a symbol table listing sorted alphabetically
by symbol name.

Figure 3-2. Example of Symbol

Table

¢9 SYMBOL TABLE SORTED BY SYMBOL 2¢-MAY-83 12:92 PAGE 22
6D ADPTR 6F ADTBLND 2D3E ALPHAS 24 CH

N2C@@® SYMDUMP $#P72 SYTYPE 2D6E SWAP 72DF4 SWIPEIT

2E5F TABLEND ?2E84 TESTLBL ? PA TXTBEG 77 VAL

*2E99 XXXXXX X 76 YYYAV X2C0p

An X, N, 7, or * in column one indicates special information about the
symbol:

- X indicates an external symbol (see the EXTRN directive).
- N indicates an entry point symbol (see ENTRY directive).
- ? indicates a symbol defined but never referenced.

- * indicates an undefined symbol. (If an undefined symbol
appears in the symbol table, your assembly must have generated
one or more NO SUCH LABEL errors.)

The next four characters are the symbol's two- or four-digit hexadecimal
value. A zero page or single-byte address is signified by two spaces
before the two-digit address; a two-byte address is displayed using all
four digits (even if the two leading digits are zeros).

The remaining fourteen characters are the first fourteen characters of
the symbol's name. All unique symbols appear in the symbol table,
although only the first fourteen characters of any symbol name are
printed.

Assembly-Language Source Files Page 85

Assembly-Language Source Files

The Assembler accepts as valid input any standard ProDOS text file that
you create using the Editor. A standard ProDOS text file is defined as
a file of logical records, where each logical record is a sequence of
ASCII characters terminated by an ASCII carriage return ($4D). Each
ASCII character must have its most significant bit (MSB) set to zero.

A source file must contain a certain amount of syntactical structure
before the Assembler can assemble it into an executable 6502 object
program. The Assembler must be able to recognize, as a valid assembly
statement, each line or logical record of the source file. The sections
that follow discuss the syntax of these assembly statements.

The Syntax of Assembly Statements

Each line of an assembly-language source file is called an assembly
statement. The Assembler allows only one assembly statement per source
line. Assembly statements consist of either an instruction statement or
an Assembler directive. Assembler directives and instruction statements
follow the same general syntax.

An assembly statement consists of up to four fields, as follows:
[label] mnemonic/operation [operand] [comment]

Note that the mnemonic or operation field is the only one required; the
other three are optional. The fields must be separated by single space
characters. (When you use the Fditor to create your program source
file, the Editor uses these spaces as tab indicators to format the
display of your program. Although the Editor allows you to use other
characters as Editor tab characters, the Assembler recognizes only the
space character to separate fields.)

This is an example of an assembly statement:

BEGIN LDX #64 ;load size of buffer to be cleared

By the Way: Programs can also contain comment lines. The
Assembler considers any line with an asterisk or semicolon
as its first character to be a pure comment line. The
mnemonic field of a comment line must be empty.

Page 86 Chapter 3: The 6502 Assembler

The Label Field

The label field is optional in an assembly statement. Any assembly
statement except a pure comment can have a label. You can label an
assembly statement with an identifier, which should start in the first
character position of the line.

An identifier is a character string that starts with a letter and
contains only letters, numerals, and periods. All characters in an
identifier are meaningful, except that lowercase letters are treated the
same as uppercase for all purposes except printing.

An identifier is a symbolic name that represents a 16-bit numeric value.
Whenever you place an identifier in the label field of an assembly
statement, you define a numeric value to be associated with that
identifier. This numeric value is either the memory address that is the
current value of the Assembler's program counter, or the value of the
operend expression if the identifier precedes an EQU directive. If you
attempt to define the same identifier more than once in a program, the
Assembler displays the message DUPLICATE SYMBOL.

As a practical matter, limit identifiers to eight or ten characters.
Although there is no limit to the length of an identifier, long
identifiers slow down assemblies, because it takes time to compare all
the characters. Long identifiers require more space in the symbol
table.

The one-character identifiers A, X, and Y represent registers in the
65¢2 microprocessor. You cannot use these identifiers to refer to any
other register, address, or data in your source programs. Because some
6502 assemblers also reserve the use of the S and P identifiers, you
should not use these identifiers if you wish to keep your source
programs compatible with these other assemblers.

You can define any absolute identifiers, or 16-bit identifiers, anywhere
in your program. If you want to use a '"Page Zero" identifier, one that
refers to an address less than 256 decimal, you must define this
identifier by using either a DSECT or EQU directive before you use it in
an operand expression, If you use an identifier before you define it,
the Assembler assumes that the identifier refers to an absolute (2-byte)
memory address, even if you later define the identifier to represent a
"Page Zero' or one-byte address.

It is a good practice to define all data identifiers at the beginning of
a program, using the Assembler's EQU, DSECT, and DEND directives.

Assembly-Language Source Files Page 87

The Mnemonic Field

The second field of an assembly source statement, the mnemonic or
operation field, must contain a valid mnemonic. The mnemonic must be
preceded by a space, even if the assembly statement contains no label.

A mnemonic consists of two or more letters followed by a space. A
mnemonic represents either a 65§02 assembly-language instruction or an
Assembler directive.

The mnemonics representing 6502 assembly-language instructions are the
standard MOS Technology mnemonics. The Assembler also recognizes
several additional synonyms for branching instructions. Appendix B
lists all assembly-language instructions recognized by the Assembler.

Assembler directives, or pseudo-operations (pseudo-ops), are
instructions to the Assembler that direct the course of the Assembly,
define program data, reserve space, or perform other Assembly chores.
Each Assembler directive is described in the section "Giving Directions
to the Assembler," later in this chapter. Appendix B lists all
Assembler directives.

The Operand Field

This field is required only for some assembly instructions and Assembler
directives. When you use a mnemonic for an instruction or directive
that requires one or more operands, you must include these operands in
the operand field, separating them with commas. There must be no spaces
within or between operands.

Each operand in the operand field must be either a register; an
identifier; a constant; or an expression composed of constants,
identifiers, and one or more operators. FEach of these is described
below.

Registers 1In an operand field, these are the 6502 microprocessor
registers. You can reference these registers by using the reserved
identifiers A, X, and Y.

Identifiers These are described in the section '"The Label Field,"
above. When you use an identifier in the operand field, the Assembler
evaluates the operand by replacing your identifier with the 8- or 16-bit
value that the identifier represents. Somewhere in your program, either
before or after you use the identifier in an operand field, you must
define a value for each identifier used. If you do not define a value
for an identifier, the Assembler displays the appropriate error message.

Constants In an assembly-language program, a constant defines an
explicit value. You can define two different types of coanstants in your
programs: numeric constants or string constants.

Page 88 Chapter 3: The 6502 Assembler

A numeric constant represents a one- or two-byte numeric value. You can
represent a numeric constant in decimal, hexadecimal, binary, or octal
notation:

- 1In decimal notation, a numeric constant is represented in base
ten by a positive integer between @ and 65535, using the digits
® through 9. If a value greater than 65535 is used as a
numeric constant, the Assembler displays a numeric overflow
message.

- In hexadecimal notation, a numeric constant is represented in
base sixteen by a $ followed by up to four hexadecimal digits.
The hexadecimal digits are the characters f} through 9 and the
letters A through F.

- In binary notation, a numeric constant is represented in base
two by a % followed by any 16-bit binary number. This binary
number is composed of the digits @ and 1. If this binary
number contains more than sixteen digits, the Assembler
displays a numeric overflow message.

- 1In octal notation, a numeric constant is represented in base
eight by the @ followed by up to six octal digits. The octal
digits are the numbers @ through 7.

String constants represent sequences of ASCII characters. You can
represent a string constant in your source program by enclosing the
characters between single quotes. For example, 'A' and 'AE' are valid
string constants. A string may be up to 24p characters long, but the
string must be defined all on one line. When you use a string constant
as the operand of an immediate-mode instruction, you need not use a
trailing quote, because such an operand may be only one character long.

When a string constant is assembled, the Assembler allocates one byte
for each character in the string. The lower seven bits of each byte
correspond to the ASCII code for that character, and the most
significant bit (MSB) is either set or not set. You can use the MSB and
DCI directives to control the state of the most significant bit (see the
descriptions of these directives in the section '"Generating Data in Your
Object Code," later in this chapter).

Expressions The Assembler recognizes and evaluates simple numeric
expressions in place of a numeric constant or identifier. A numeric
expression consists of constants, identifiers, and one or more
operators. The Assembler recognizes four arithmetic operators and three
binary—~logic operators.

The Assembler recognizes the four arithmetic operators + (addition),
- (subtraction), * (multiplication), and / (division) in expressions.
When performing these arithmetic operations, the Assembler does not
check for numeric overflow of the results; it just retains the 16-bit

Assembly-Language Source Files Page 89

results. Thus you can use these operators to perform wrap-around memory
address calculatiouns.

The Assembler recognizes three binary-logic operators to perform logical
operations on two l6-bit values. The characters used are ~ (AND),
| (OR), and ! (exclusive-or).

Note that these are full 16-bit operators. All of them, especially the
exclusive-or operator, can produce unexpected results if applied to
8-bit constants or expressions.

Righ-byte and Low-byte Operators The Assembler always maintains a
16-bit value when it evaluates a numeric expression. To extract an
8-bit result from this 16-bit value, use the high-byte < and low-byte >
operators to extract the high order or low order byte from a 16-bit
value.

To help remember the meanings of the characters that represent these
operators, think of these two characters as arrows pointing to either
the left or the right half of a hexadecimal constant. For example,

<(8FF1l1) is equivalent to SFF
>($FF11) is equivalent to $l1

Expression Syntax The syntax of a valid Assembler expression, in
Backus-Naur Form (BNF), is

Term := Constant , Identifier

Byteopr := > , <
Expression := [Byteopr] Term [Opr Term]...}

This syntax definition says "An expression is a term preceded by an
optional byte-operator and followed by one or more optional [operator
term] sequences.'" The Assembler evaluates each operator, from left to
right. 1If you do not follow this syntax when forming an expression, the
Assembler will signal an assembly error.

An arithmetic or logical operator cannot be the first or last element of
an expression. The only exceptions are the plus and minus operators
(+ and -), which can be used to indicate a positive or negative

expression.

Expressions should not contain blanks: if an expression contains a
blank, the part after the blank is treated as a comment and ignored by
the Assembler.

Page 90 Chapter 3: The 6502 Assembler

If you have directed the Assembler to generate relocatable object code
(using the REL directive, discussed later in this chapter), the
Assembler does not allow multiplication, division, or the binary-logic
operators to be applied to a relative identifier or subexpression,
because these expressions would generate a nonrelocatable result. Also,
the high-byte and low-byte operators generally do not produce a correct
relocatable result. This restriction applies only if you use the REL
directive to generate relocatable output from the Assembler.

The Location Counter You can use the asterisk (*) in an operand
expression to represent the current value of the Assembler program
counter, or PC. The asterisk normally represents the value of the
program counter at the beginning of the line or statement containing the
asterisk.

If the asterisk follows an instruction mnemonic, the program counter
points to the address of the first byte of that instruction code. If
the asterisk follows either DW or DDB, both of which accept a list of
items, the the program counter changes as if each item in the list were
defined with a separate statement. The DFB directive updates the
program counter after every four generated bytes--the number of bytes
printed on each line of the listing when multiple bytes are created with
a single statement.

You can perform addition or subtraction on the value of the program
counter. You can also use the high-byte and low-byte operators on the
value of the program counter., The high-byte and low-byte operators
allow you to align code or data structures to specific positions
relative to a memory page. For example, the statements

HEREL EQU >* ;define HEREL as the low-byte of current PC
DS S1PP-IEREL ;fill to next page boundary
NEWPAGE EQU * ;start of next memory page

create an unused data area up to the next page boundary. The code or
data that follows is aligned from byte zero of the next page.

The advantage of this method is that it will always produce page-—aligned
code, even when the size of the program preceding this code changes as
revisions are made. This method can also be used to align code to other
specific positions in a page, and it can be used with the ORG directive
to make relative ORG adjustment to the PC.

Zero Page Addressing The Assembler normally generates a two-byte or
zero page instruction whenever the operand is a properly defined zero
page identifier or expression.

Sometimes, however, you may want to generate an absolute or three-byte
instruction that refers to a zero page address. To get around this
Assembler rule, you must equate the identifier to the desired zero page

Assembly-Language Source Files Page 91

value only after you have referenced the identifier at least once in an
operand expression. The Assembler treats the identifier as an absolute
identifier for the remainder of the assembly, generating

absolute-addressing opcodes for all instructions using this identifier.

The Comment Field

You can use the optional comment field to document what your program is
doing. The Assembler prints the comment field in its program listing,
but for all other purposes the comment field is ignored.

The comment may contain any ASCII characters. It must be separated from
the operand field by a space. If you want the Editor to truuncate
comments, begin the comment field with a semicolon (see the Editor's
TRuncON command, described in Chapter 2).

WARNING
Comment fields can be no longer than 255 characters.

The Assembler also recognizes as comments statements that begin with an
asterisk or a semicolon. These statements are treated entirely as
comments, ahd though they appear in listings, they are otherwise ignored
by the Assembler.

Giving Directions to the Assembler

Assembly directives are instructions that you put into your program
source file. They direct the Assembler to perform certain operations

during the assembly of a program.

Statements containing Assembly directives resemble those containing
machine instructions in that both statements can contain label,
mnemonic, operand, and comment fields. Unlike machine instructions,
however, Assembly directives are not assembled into executable 6502
opcodes. Only the data-definition Assembly directives generate actual
data that is included in the resulting object program.

Assembly directives perform a variety of functions, including:
- Controlling the overall assembly of your program

~ Assigning information

Page 92 Chapter 3: The 6502 Assembler

~ Generating data to be included in the object file

- Controlling the conditional assembly of portions of your
program

- Controlling any additional source files that will be used in
the assembly

- Controlling what type of object code will be generated during
the assembly

- Controlling how assembly listings will be printed.

The following sections describe each of the assembly directives that the
ProDOS Assembler recognizes. Many of these directives are specific to
this Assembler, although you will probably recognize similarities to
other assemblers with which you may be familiar.

The discussion of each Assembly directive begins with the required
syntax of the statement containing the directive. Where labels are not
shown, you can include a label if you wish. Any of these statements can
also include a comment.

Controlling the Overall Assembly

The directives described in this section are used to direct the overall
assembly of a source program. These directives

- Control the addresses at which a program is assembled

- Permit you to generate dummy code sections to define memory
locations your program can access or counstants that it can use

~ Control the type of object code (absolute load-image object
code, absolute system program object code, or relocatable
object code) that the Assembler generates.

To use these directives, include the directive mnemounic in an assembly
statement, as you would any other mnemonic. Some of these directives
also require that you include an operand in the statement. You can
precede any of these directives with a label, and you can follow any
directive with a comment.

ORG

ORG expression

The ORG (Origin) directive establishes the origin address of your object
code.

Giving Directions to the Assembler Page 93

WARNING
You must use at least one ORG directive in your source file,
or the Assembler will not generate and save object code.

The Assembler recognizes two kinds of ORG directives: relative and
absolute.

A relative ORG is one whose operand expression contains relocatable
identifiers. You must have previously defined all of the identifiers
that you use in the operand expression. Three examples of relative ORG
directives are:

ORG *+5
ORG SYM+1§
ORG *-20p

These relative ORG directives cause the Assembler simply to update its
internal program counter for the current object file. The Assembler
updates this program counter both forward and backward in relation to
your object file. If you increase the value of the Assembler's position
counter, the Assembler fills the object file forward to the new position
with random data. If you decrease the value of this position counter,
the Assembler deletes any object code that it had previously generated
for any addresses above the new value of the program counter.

An absolute ORG directive is one whose operand contains an absolute
expression, typically a constant. You will use an absolute ORG
directive to define the starting address for which the Assembler will
generate object code., The Assembler also places this starting address
in the output object file's directory entry, so that ProDOS can use this
address when you later load the object file using ProDOS's BLOAD or BRUN
command. You'll normally use just one absolute ORG directive in a
program source file.

The Assembler generates a new output object file for each absolute ORG
it encounters in a source file, closing the current object file (if any)
and starting a new file. The new file has the same filename as

the old file, except that the last character in the filename is changed
to the next character in the character set

P123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ
This character set is circular, with ¢ following Z. For example,

filename ABCDE would be changed to ABCDF; VWXYZ would be changed to
VWXYP. This limits to 36 the number of absolute ORGs in one assembly.

Page 94 Chapter 3: The 6502 Assembler

By using multiple absolute ORG directives in your source program, you
create multiple object files. These files must be either combined after
assembly, or loaded independently.

WARNING

Be sure these new filenames do not already exist as the

names of unrelated files--the Assembler deletes existing
output object files (BIN, SYS, or REL types) without any
warning.

This design is based on the assumption that when you
repeatedly assemble the same program, the old object file
becomes obsolete as you make corrections in your current
assembly. If this is not the case, rename or copy to
another volume the older version of your object file(s).

SYS
SYS

The SYS directive changes the file type of the next object file that the
assembler will create in an assembly. This directive should immediately
precede an ORG statement if you are creating a ProDOS interpreter file
(see the ProDOS Technical Reference Manual for details).

After the Assembler opens each object file during an assembly, it resets
the object file type to binary (BIN in the catalog displays). Thus you
can create a ProDOS interpreter and associated binary overlays in a
single assembly, by putting the SYS directive before the proper ORG
statement,

DSECT and DEND

DSECT
DEND

Use the DSECT (Dummy SECTion) directive to define an area of memory,
such as a data table, or the 6502 Page Zero, without actually generating
any object code to reside in this memory area. The DSECT directive
marks the beginning of a block or group of statements in which you
define the values of identifiers that you will use elsewhere in your
program. Use these identifiers to reference memory locations within the
DSECT memory area. You will most commonly use the DSECT directive to

Giving Directions to the Assembler Page 95

define the labels of data items and pointers in the 652 Page Zero area
of memory.

The name DSECT comes from Dummy SECTion, so called because the Assembler
generates no object code for this section. The DSECT directive causes
the Assembler to suspend object code output temporarily, and sets the
Assembler's position counter to address zero. Once you have started a
DSECT memory area, the DSECT remains in force until the Assembler
encounters a DEND (End DSECT) directive, described below. Within this
DSECT area, you can include any assembly statements you wish, including
the ORG directive.

If you include an ORG directive within a DSECT, the Assembler uses the
ORG only to control the addresses that the Assembler assigns to
identifiers within the DSECT. The Assembler does not treat these ORG
directives as absolute ORGs, nor do these ORGs alter the Assembler's
normal position counter, which is saved while the statements of the
DSECT are assembled.

You cannot nest DSECT areas. That is, you cannot use a DSECT directive
between another DSECT and a DEND. If you do this, the Assembler will
signal a DSECT/DEND error.

The DEND directive marks the end of the DSECT statements. When the
Assembler encounters a DEND directive, the Assembler resumes generating
object code where it left off after encountering the DSECT directive.
The Assembler restores its normal position counter address, which it
saved while assembling the DSECT statements.

Here is an example of the use of the DSECT and DEND directives:

DSECT
ORG $pp
; DEFINE ZERO-PAGE STORAGE
AREG DS 2
BREG DS 2
CREG DS 2
H DS 1
L DS 1
ORG S40P
TEXTPG1 DE S400

DEND

Page 96 Chapter 3: The 6502 Assembler

Note: If you start a dummy section with the DSECT directive
and never end it with a DEND directive, none of the assembly
statements following the DSECT directive will appear in your
object file output. These statements will appear in
listings, just as in a normal assembly, but no object code
will be generated. This "missing DEND" problem can be the
cause of mysterious losses of object cyde in your output
files.

OBJ
0OBJ expression

The OBJ (OBJect) directive is useful only if you wish to assemble your
program and place the object code directly into memory rather than
storing it on disk. When you suppress the generation of an object file
by typing the ASM command with the @ option for the object pathname, the
Assembler generates no object output unless you use this directive to
specify where in memory to put the object code.

The OBJ directive should be at the beginning of the program: only those
statements that follow it will have object code generated from them.

The Assembler performs very specific checks on the expression given in
the OBJ directive. You should not use a value less than the current end
of the Assembler's symbol table; if you do, the Assembler displays the
displaying the message OBJ BUFFER CONFLICT. In addition, you should not
use a value greater than the HIMEM value passed to the Assembler by the
Fditor; if you do, or if the object code output exceeds this limit
during an assembly, the Assembler signals an OBJ BUFFER OVERFLOW. The
symbol table area normally occupies memory from $8#9 through $7000; thus
OBJ $60PP allows room for 4K of object code and much less space for the
symbol table.

You cannot use this OBJ directive if you use the REL directive
(discussed below) to generate relocatable object code output.

Giving Directions to the Assembler Page 97

REL
REL

The REL (RELocatable) directive causes the Assembler to generate
relocatable object code during the assembly. The Assembler does this by
appending a relocation dictionary to the end of the object code. The
relocating loader program can later use the relocation dictionary to
load your object program and prepare it for execution at any starting
address. The relocating loader routines are described in Chapter 5.

The Assembler produces a relocation dictionary only if you include the
REL directive at the beginning of your source program, before you use or
define any identifiers.

WARNING

The relocation dictionary requires space within the symbol
table area, reducing the space available for identifiers.
An assembly that uses up most of the symbol table space
without the REL option will not assemble later with REL
enabled.

When you use the REL directive, your object file is given a file type of
REL (RELocatable) in the ProDOS disk catalog. Relocatable object files
cannot be used by the ProDOS BRUN command. This type of file can be
used only with the RLOAD program described in Chapter 5.

The REL directive requires no operand. You may not use this directive
in a source program containing an OBJ directive to produce coresident
object code output.

When it generates relocatable object files, the Assembler clears the
relocation dictionary each time it encounters an absolute ORG directive.
Each segment of your assembled object code will have a separate
relocation dictionary.

X6502

X65@2

This directive is included solely for those who might want to use an
Apple system to develop software for the NCR 65C@2 microprocessor.

This directive allows you to include the nounstandard opcodes and
address modes available in the 65C@2. This microprocessor and its
documentation are not available from Apple Computer, Inc. As this

Page 98 Chapter 3: The 6502 Assembler

manual is written, NCR's address is 20§1 Danfield Ct., Ft. Collins,
Colorado 8#525.

See Appendix B for a list of the 65C@2's additional mnemonics.

If you use the X65@¢2 directive at least once during an assembly, before
the first use of such an instruction or address mode, the Assembler
accepts the 65C#2's additional instructions and address modes and their
syntax without causing the 65CPH2 ADRS MODE/OPCODE ERROR message. We
leave the details of the 65C@2 to those programmers who have the
determination to acquire the necessary documentation.

PAUSE
PAUSE 1 / PAUSE 2

The PAUSE directive causes an assembly to halt and display the message
PRESS RETURN TO CONTINUE and to wait for the RETURN key to be pressed
once.

If the pause is to occur during pass 1 of the assembly, type
PAUSE 1
If the pause is to occur during pass 2 of the assembly, type
PAUSE 2
To request a pause at the same place in both passes, use both at the
same place. This directive can be used just before a CHN or INCLUDE

directive to allow programmed volume exchanges in flexible disk-based
systems.

If the disk volume of the first source file is vnot mounted when pass one
ends, there must be an extra PAUSEl as the last statement of the last
source file to allow for insertion of the proper volume before pass two
begins.

WARNING

(1) Never remove a volume that is being used for output
file(s), as ProDOS doesn't prevent you from writing on
some other volume put in place of such an output volume.
The Assembler can have two output files, the object file
and the listing file, open on different volumes, so be
careful how you use this directive.

(2) Don't use volume swapping unless you fully understand
it., ProDOS is not designed to allow volume swapping--
it provides no protection if volume swapping is used

Giving Directions to the Assembler Page 99

incorrectly. Volume swapping can be used only if you
swap read-only volumes. Swapping a read-only volume for
a read-write volume will probably destroy the files

on your disks.

(3) Volume swapping will not work in a one-drive system,
because the object file must always be mounted.

Assigning Information

The directives described in this section are used to direct the overall
assembly of your source program. They are used to assign numeric values
to identifiers or to define the characteristics of an identifier that
may reference or be referenced by another assembly-language program.

Include these directives in an assembly statement as you would any other
mnemonic. Some of these directives require an operand in the statement.
You can precede any of these directives with a label, and you can follow
any directive with a comment.

A Note on External Symbols: You may use the DEF, ENTRY,
ZDEF, EXTRN, REF, ZXTRN, and ZREF directives whether you are
producing a relocatable object file or a binary object file.
To correctly run a program that contains refereunces to
external identifiers, however, you must use a Linker or
Linking Loader to link this module to other program modules
in which all of these external references are resolved.
Although no such Linker or Linking Loader is currently
available, these directives are provided here for
completeness, in the event that you want to write your own
Linker or that a Linker or Linking Loader becomes available.

You can also make use of external symbols when you are
creating self-modifying code, as a way of defining addresses
that are filled in at execution time. The DEF and ZDEF
directives do not cause anything to appear in the machine
code portion of the object file; the EXTRN and ZXTRN
directives allow undefined symbols to remain undefined
without causing Assembler error messages.

Page 100 Chapter 3: The 6502 Assembler

EQU
identifier EQU expression

Use the EQU (EQUate) directive to define the value of a symbolic
identifier. The identifier that you place in the label field cannot be
defined elsewhere in your program. The Assembler evaluates the
expression in the operand field and defines the identifier to have this
numeric value. You cannot use any external identifiers in the operand
expression.

You can use symbolic identifiers to create a source program that means
something to people, rather than just to the computer. Using this
directive helps you create a program that is easy to change and
understand long after it is written. The EQU directive provides an easy
way to name any item that has special meaning--for example, an ASCII
character that might serve as a special delimiter in a program. Using
this directive, rather than just a string constant in many places, makes
it possible to change how a program functions without having to edit
many lines.

DEF (or ENTRY)
DEF identifier / ENTRY identifier

The DEF directive signals the Assembler that an identifier defined in
this module of your program may be referenced by other modules as an
external symbol. You may use this directive more than once in a module,
either to define global identifiers or to define alternate entry points
for your module.

When you use the DEF directive in an assembly statement, the identifier
in the operand field is marked as a global or entry point identifier.
Normally, the value of this identifier would be defined elsewhere in
your program. You may, however, define the current value of the
Assembler's program counter as a global entry point by including this
same identifier in the optional label field of the statement containing
the DEF directive. You should not use the DEF directive inside a DSECT.

Whenever you assemble a module containing the DEF directive and select
relocatable object code using the REL directive, the Assembler appends
an external symbol directory (ESD) to the relocation directory (RLD) of
your object code output. This extermal symbol directory contains all of
the global identifiers and external symbols defined in your module,
along with information necessary for a Linker or Linking Loader program
to link this module to other modules that may reference these entry
points or global identifiers.

Giving Directions to the Assembler Page 101

ZDEF
ZDEF identifier

Use the ZDEF (Zero page DEFine) directive to create a zero page global
identifier in the same way that you would use a DEF or ENTRY directive
to create an absolute identifier.

All the rules that apply to DEF and ENTRY also apply to ZDEF, except
that the identifier must be a zero page identifier. You can use the
ZDEF directive only after the identifier has been defined as a zero page
identifier; otherwise the Assembler displays the message ILLEGAL LABEL.

EXTRN or REF
EXTRN identifier / REF identifier

The EXTRN (EXTeRNal) directive is used to indicate that an identifier is
defined externally, rather than within this module. The Assembler
always treats these identifiers, or external symbols, as two-byte
identifiers, never as zero page identifiers. 1If you use an external
symbol as the operand of an instruction, the Assembler generates two
zero bytes in the address portion of that instruction.

If you are using the REL directive to generate relocatable object code,
and you use the EXTRN directive to define symbols as external, the
Assembler adds an external symbol directory (ESD) after the relocation
directory (RLD) in the relocatable object file.

To execute a program module containing external symbols, you must first
use a Linker or Linking Loader program to link this module with one or
more additional program modules in which these external symbols are
defined. A Linker resolves all these external references, using data
from the External Symbol Directories of each module, and links all the
modules into a single executable object program.

You can include a label identifier in the label field of the statement
containing the EXTRN directive, and this label will be defined with the
current value of the Assembler's program counter. The identifier that
follows the EXTRN directive in the operand field of the statement is the
identifier that is defined as the external symbol.

Page 102 Chapter 3: The 6502 Assembler

ZXTRN or ZREF
ZXTRN identifier / ZREF identifier

This directive serves the same purpose for zero page globals that EXTRN
or REF does for absolute global ideuntifiers.

You must use this directive to define an identifier as a zero page
identifier before referencing this identifier in the operand field of an
assembly statement., Otherwise the Assembler displays the error message
ILLEGAL LABEL.

Generating Data in Your Object Code

Use these Assembly directives to allocate or define data areas within
your assembly-language program. These Assembly directives let you
define

- Byte and word data

- Address tables

- Data storage areas

- ASCII character data
- Message strings.

Any of these Assembly directives can be preceded by a label and followed
by a comment.

DFB or DB
DFB expr{,expr...] / DB expr[,expr...]

The DFB (Define Byte) directive is used to define one or more bytes of
data to be placed in the object file. The Assembler evaluates each
expression and uses the resulting value, modulo 256, as the value for
each byte. 1If you use an identifier in the label field of the statement
containing the DFB directive, the byte generated is the low byte of the
address of the identifier. If the bytes that are generated are
calculated from a relocatable expression, the Assembler makes an entry
in the RLD for each such byte, so that its value can be relocated.

Separate the expressions in the operand with commas, and use no blanks
between them. Any valid expression can be used in the operand field.
The program counter, referenced by the asterisk pseudoidentifier, is
updated for every four bytes of generated object file data.

Giving Directions to the Assembler Page 103

It is better to use multiple DFB directives, limiting each DFB directive
to five to ten expressions, than to use a large number of expressions in
the operand of one DFB directive.

DW expr(,expre..]
The DW (Define Word) directive is used to define two-byte 6592 words.

In a 6502 word, the lowest eight bits of the 16-bit expression are
stored in the first byte, and the most significant (high) eight bits are
stored in the second byte. The bytes must be in this order if the
16-bit address is to be used as an indirect address pointer in the
indirect-indexed and jump-indirect instructions of the 6502
microprocessor.

The label field identifier is given the value of the program counter,
which is the address of the first (low order) byte of the first word.
If more than two expressions are used, only the first one appears in
program listings, unless you enable the LST GEN option. The program
counter, referenced by the asterisk pseudoidentifier, is updated as if
each expression were defined by a separate DW statement.

DDB
DDB expr|,expr...]

The DDB (Define Double Byte) directive is exactly like the DW directive,
except that the bytes are stored in reverse order, with the high order
byte first and the low order byte second.

The label-field identifier has the address of the first (high order)
byte of the first double byte expression.

DS expr[,expr]

The DS (Define Storage) directive is used to reserve a group of bytes
without defining any data to be stored in those bytes. The first
expression of the DS directive may contain identifiers only if those
identifiers have been defined earlier in the program. This expression’s
maximum value is 16384 decimal.

If you include a second expression in the operand field, the reserved
bytes are filled with the value of this expression. If you include only
the first expression in the operand field, the reserved bytes will
contain random values.

Page 104 Chapter 3: The 6502 Assembler

The amount of space reserved by the DS directive is included in the size
of the output object module. Thus, if you accidentally enter a DS with
an expression that comes up with a value of, say, 12K bytes, you will
suddenly get a very large output file. To avoid wasting disk storage
space, use this directive only for small data areas. Large buffers and
work areas need not be stored along with your executable object program,
and so should not be defined by using this directive.

1f you include an optional identifier in the label field of this
assembly statement, this identifier is assigned the address of the first
byte of this allocated storage.

When you use a DS directive inside a DSECT, the Assembler does not
actually place any code in the object file. Using DS statements within
a DSECT is an easy way to define a data structure so that you can modify
it later and reassemble the program without affecting other assembly
statements in the source program.

MSB
MSB ON
MSB OFF

The MSB (Most Significant Bit) directive lets you control the value of
the most significant bit of the ASCII characters that are generated by
the Assembler. You can use the MSB directive as many times as you need
to in an assembly program. The ASCII characters affected by MSB are
those generated as immediate string constants, and the string operand of
the ASC directive, but not the DCI directive.

WARNING

The ProDOS Assembler defaults to MSB OFF, because this is
the standard definition of ASCII characters in ProDOS data
files. However, the DOS 3.3 version of the Assembler
defaults to MSB ON. Be careful when moving source files
from the DOS to the ProDOS Assembler.

Giving Directions to the Assembler Page 105

ASC
ASC .string.

The ASC (ASCII) directive defines a string of eight-bit bytes in the
output object file that are filled with the ASCIT values of the
characters in the operand string of the ASC directive. Four or fewer
bytes are printed on each source line, without a line number, if the LST
Gen option is in effect for the directive. When the LST NOGen option
(the default) is in effect, only one line and the first four bytes are
printed. If a label is present on the ASC directive, it is assigned the
current value of the program counter, which will be the address of the
first character of the string constant in memory.

The operand string (shown above as .string.) is a delimited string that
begins with any character that does not occur in the string, and is
optionally terminated with the same delimiter. You can omit the
terminating delimiter if you also omit the comment field in the assembly
statement. The MSB directive controls whether the most significant bit
of each character in the generated bytes is a one or a zero.

STR
STR .string.

The STR (STRing) directive is an easy way to create a string of ASCII
characters preceded by a count byte.

The count byte contains the number of characters in the string, not
including the count byte itself. The MSB directive controls whether the

most significant bit of each character in the generated bytes is a one
or a zero.

DCI

DCI .string.

The DCI directive functions just like the ASC directive, except that the
MSB directive does not control the MSB of each byte.

Instead, the Assembler generates all bytes of the DCI string with a MSB
of zero, except for the last byte, which will have a MSB of one.

Page 106 Chapter 3: The 6502 Assembler

DATE
DATE
This directive generates nine bytes of ASCIT data in the output file,

The nine bytes are generated from the ProDOS date word at the beginning
of each assembly. This date is converted into a sequence of ASCII
characters in the DD-MMM-YY format.

TIME
TIME

This directive generates six bytes of ASCII data in the output file,
from the ProDOS time word.

If the ProDOS time word contains a zero, these six bytes contain six
blanks; otherwise they contain the time in the format HH:MM_, where _
represents a space.

If your computer has a ProDOS—compatible clock card installed, ProDOS is
used to update the time word before each assembly, providing a unique
datum in IDNUM. This information is printed in the header line of the
assembly listing output; thus this directive provides a means of marking
an object module so you can associate it with a particular printed
assembly listing. However, you must set it externally if your system
has no clock card.

Controlling Conditional Assembly

The Assembler recognizes a number of directives that let you countrol
which sections of a program source file are included in the assembled
object file., This process, called conditional assembly, is useful for
writing a single program that you can later assemble to run in different
environments, such as "production" versus "test," or "machine
configuration x" versus '"machine configuration y."

DO, IFxx, ELSE, and FIN

These nine (there are six variations of the IFxx directive)
conditional-assembly directives work together to mark the beginning and
end of a section of conditional assembly source statements, called a
conditional assembly block. A conditional assembly block is a group

of source statements that are assembled only if certain conditions are
met.

- The DO directive marks the beginning of a conditional assembly
block.

Giving Directions to the Assembler Page 107

-~ The FIN directive marks the end of a conditional assembly
block.

- The ELSE directive divides the statements between a DO and a
FIN directive into two conditional assembly blocks; the second

conditional block is an alternate conditional block that is
assembled only if the first block is not.

The other conditional~assembly directives—-IFNE, IFEQ, IFLT, IFLE,
IFGT, and IFGE-~are referred to in this section as the IFxx
directives.

Like the DO directive, they mark the beginning of a conditional block of
source statements. These directives must always be followed in the
source program by the FIN directive.
Here is the format of a conditional assembly block:
DO expression or IFxx expression
(conditional block #1)
[ELSE

(conditional block #2)]

FIN
When the Assembler encounters a DO or IFxx directive in a source
program, it evaluates the operand expression and compares the result to
the value zero. Any identifiers you use in this operand expression must

be defined earlier in the source file.

This is how the DO and IFxx directives control the assembly of the
conditional block:

- The DO and IFNE directives cause the conditional block to be
assembled if the resulting expression is not equal to zero.

— The IFEQ directive causes the conditional block to be assembled
if the resulting expression is equal to zero.

- The IFLT directive causes the conditional block to be assembled
if the resulting expression is less than zero.

- The IFLE directive causes the conditional block to be assembled
if the resulting expression is less than or equal to zero.

- The IFGT directive causes the conditional block to be assembled
if the resulting expression 1is greater than zero.

Page 108 Chapter 3: The 6502 Assemb

~ The IFGE directive causes the conditional block to be assembled
if the resulting expression is greater than or equal to zero.

Depending on the value of the operand expression, the Assembler does
of the following:

- It assembles the statements iu the conditional assembly block.

- It ignores the statements in the conditional block and creates
no object code for these statements. The Assembler indicates
in the assembly listing the source statements that it ignores.

To define the start of a second or alternate conditional assembly blo
include an ELSE directive between the DO directive and the FIN
directive. This alternate conditional block is assembled only if the
first conditional block is not assembled. The ELSE directive marks t
end of the first conditional block and the start of the alternate
conditional block. An ELSE can be used only between a DO and a FIN.

The FIN directive marks the end of the entire counditional assembly
block. When the Assembler encounters the FIN directive, it assembles
all subsequent assembly statements in the source file normally.

Although the Assembler does not recognize assembly variables that you
can change within your source program, you can use dummy identifiers
that you define along with these conditional assembly directives to
control a variety of different assembly conditions.

Here is an example of how to use the conditional assembly directives:

IFLE TBLSIZE-256 ; DOES TABLE FIT IN 1 PAGE?

DS 256 ; YES. allocate only 1
ELSE ; otherwise ...

DS 512 ; NO. use two pages
FIN ; oh boy, all done!

FAIL
FAIL pass,.string.

Use the FAIL directive in conjunction with the conditional assembly
directives to provide programmer error messages. When the Assembler
encounters this directive while assembling a source file, it prints
whatever message is in the string. Typically, FAIL is enclosed in a

ler

one

ck,

he

Giving Directions to the Assembler Page 109

conditional assembly block that will be assembled only if an error
condition is detected.

The value of the pass expression is the Assembly pass number a, 2,

or 3) in which the Assembler will print the FAIL error message (3 means
both pass 1 and pass 2). The string is the message text and, like an
ASC operand, must be enclosed by delimiters.

You can use this directive to perform automatic checks for size on the
matching halves of data tables or for code page alignment, and similar
cross checks between things that must match in size or have particular
relationships. You can use any of the conditional-assembly directives
with this FAIL directive to generate these automatic warnings.

Controlling Source Files

The four source file directives (CHN, INCLUDE, SBUFSIZ, and IBUFSIZ) let
you the source files that the Assembler will assemble, and control the
size of the buffers that the Assembler will use to read these files.

CHN
CHN pathuname

The CHN (CHaiN) directive is used to connect the segments of a large
source program.

The pathname is required. Because all statements following a CHN
directive are ignored, CHN should only be the last statement of a source
file. 1If the specified pathname does not correspond to an existing file
on a mounted volume, the Assembler displays the message FILE NOT FOUND
and cancels the assembly.

INCLUDE

INCLUDE pathname
The INCLUDE directive is used for one level of source file nesting.
This directive causes the Assembler to suspend assembling statements
from the current source file and to start reading and assembling the
statements in the file specified by pathname. If the volume, path, or

filename canunot be found, the appropriate error message is displayed.

The Assembler does not permit nested INCLUDE files (do not use an
INCLUDE directive in an included file).

Page 110 Chapter 3: The 6502 Assembler

SBUFSIZ and IBUFSIZ

IBUFSIZ expression
SBUFSIZ expression

These two directives let you optimize the size of the buffers the
Assembler uses when reading your source and INCLUDE files during
assemblies.

The source buffer's default size is four pages or 1§24 bytes. The
INCLUDE buffer's default size is 16 pages or 4096 bytes. These defaults
are close to optimal for doing multiple-file assemblies using INCLUDE
files with Disk II drives.

The Assembler displays FREE SPACE PAGE COUNT at the end of the assembly
listing. This count is the number of memory pages that were unused by
the Assembler for symbol and/or RLD tables at the end of the assembly.
You can use this information along with the IBUFSIZ and SBUFSIZ
directives to increase the size of the SOURCE and INCLUDE buffers, thus
increasing the speed of printing and assembly.

By the Way: If you have a Disk II drive, do not use a buffer
larger than 32 pages. Doing so can result in a slower
assembly time.

The Assembler evaluates the operand expression in two ways:

- If the value is less than 128, the Assembler takes the value to
be the size of the buffer in pages, where a page is 256 bytes.

- If the value is greater than 256, the Assembler takes the value
to be the size of the buffer in bytes. If the value is not
divisible by 256, the Assembler truncates the buffer size to
nearest whole number of pages.

If the resulting number of pages is greater than 127, the Assembler
signals an OVERFLOW error. If the buffer size exceeds available memory,
the assembly is cancelled. The assembly is also cancelled if the new
size of SBUFSIZ creates a source buffer so small that the source file
would be truncated.

Use these directives only within a source file. If you use these
directives in an INCLUDE file, the Assembler displays the message
INVALID FROM INCLUDE FILE.

Giving Directions to the Assembler Page 111

Controlling Assembly Listings

These optional directives and directive options control the format and
presentation of the assembly listings generated by the Assembler, They
can improve the readability of assembly listings and save space in your
source files.

By the Way: You can include an identifier in the label field
of any assembly statement containing a listing directive,
but this is not recommended. Because assembly statements
containing listing directives are not printed in your
assembly listings, defining identifiers in this way could
result in incomplete documentation of your program.

PAGE
PAGE

When it encounters a PAGE directive, the Assembler sends an ASCII
form~-feed character to the output device, causing a page eject. It also
sends a blank line to the video screen.

The PAGE directive itself does not print as a line on the listing, but
you can detect its presence by its action and the missing line number in
the listing. When you are using the Editor, you can use the missing
line number to find this line.

LST

LST (ON , OFF) [, [NOloption [, [NOJ]option] ...]
or

LST [NO]Joption [, [NOJoption] ...]
The LST (LiSTing) directive lets you suppress part or all of the source
listing. Turning the listing off (LST OFF) can increase the speed of
your assembly. This is most noticeable when you are doing a large
assembly and listing it to a printer. You can use this directive any

number of times to turn on aund turn off selected parts your program's
listing.

Page 112 Chapter 3: The 6502 Assembler

The eight options are specified by the first letter of the following
abbreviations:

Cyc, Gen, Warn, Unasm, Asym, Vsym, Sixup, Exp

The options provide additional control of the information in the listing
file. You can specify any number of options with or without the ON/OFF
print control. The option processor recognizes only the first letter of
each option, so you can choose your own spellings if you like. If you
do not use the LST directive in your source program or do not specify
any options, the Assembler assumes these defaults:

LST ON,NOCyc,NOGen,Warn,Unasm,Asym,NOVsym,NOSixup,Exp

Cyc Option If you are programming timing-sensitive code, you can

use the Cyc (Cycle times) option to cause the Assembler to list the 6502
instruction cycle time for each assembly instruction in the source file.
The times are printed, as single digits within parentheses, to the left

of the source line numbers.

NOCyc (the default) turns off the printing of cycle times.

Gen Option The Gen (Generated object code) option is used to

control the printing of all object code bytes generated by the data
directives, if printing this data would require more than omne print
line. This option affects only what the data directives generate, not
what they print.

Unless you specify the Gen option, the Assembler lists only the first
four bytes of object code generated by a data directive. The default is
NOGen (option off), which saves printing time.

Warn Option The Warn (Warnings) option enables or disables the
printing of Assembler warnings.

The default value is Warn (option on).

Unless you use the NOWarn option, the Assembler prints all warnings it
encounters as it assembles your file. The Assembler prints a warning
total at the end of the listing, along with the error message total,
even if you have suppressed the printing of the warnings themselves.

Unasm Option Normally, the Assembler prints all statements in your
source program, marking those statements that were unassembled. Use the
Unasm (Unassembled source) option to suppress printing of statements in
your program that were not assembled because they were part of a
conditional assembly block.

The default value is Unasm (option on).

Asym Option The ASYM (Alphabetic symbol table) option produces an
alphabetical symbol table dump listing. The default value is Asym

Giving Directions to the Assembler Page 113

(option on). Use the NOAsym option to suppress the Assembler's normal
alphabetical listing.

Vsym Option The Assembler can print the symbol table by order of the
symbol values, if you select the Vsym (Value-ordered symbol table)
option. The Assembler requires an extra two bytes per symbol, over the
size of the symbol table at the end of pass two, to complete this
successfully. The default value is NOVsym.

When available memory is not sufficient, the Assembler uses what is
available and prints only the symbols that it can sort. If you have a
large assembly that uses up most of the 27K of symbol table space, the
value-ordered symbol table may not contain all the identifiers.

Sixup Option The Sixup (Sixup symbol dump) option causes the

Assembler to print the symbol table dump in six columms, instead of the
normal four, when the listing is directed to a printer. Your printer
must be able to print 12§ or more characters per line. The four—column
default results in a table that is 8(characters across.

The default value is NOSixup (option off).

Exp Option The Exp (Expansion lines) option causes printing of macro
expansion lines. To suppress printing of macro expansion lines, use
LST NOExp.

REP
REP expression

The REP (REPeat) directive is used to print a string of characters in
your listings, starting at the first character of the source statement

portion of the listing.

Unless you use the CHR directive (described below), the character
printed is the asterisk (*). You can use any number of REP directives
in a source file.

The REP directive is used to make listings more readable, typically by
printing a string of asterisks to set off comment headings at the
beginning of subroutines or modules. You can save considerable space in
your source file by using this directive instead of simply inserting the
string of asterisks in the file.

Only the low byte of the expression is used. You can have the currently
defined CHR character printed up to 256 times. If you specify # or 256,
256 characters will be printed.

Page 114 Chapter 3: The 6502 Assembler

CHR
CHR "?"

The CHR (CHaRacter) directive is used to change the character repeated
by the REP directive described above.

? represents any character you want printed instead of an asterisk,
This directive can be used any number of times to change the character
for different parts of your listing.

SKP
SKP n

The SKP (SKiP) directive lets you insert n blank lines in the listing,
by sending ASCII carriage returns to the output device.

The device must provide its own line feed on CR if that device requires
a LF to advance a print line on the paper.

SBTL
SBTL .string.

The SBTL (SuBTitLe) directive provides a title line (specified above as
.string.) at the top of each page of the listing file.

The subtitle can be up to 2{ characters long when output is to a
4@-column screen, and up to 35 characters long when output is to an
80-column device. SBTL is optional, but it provides an easy way to
identify a listing. This directive causes the first line of each
subsequent page to contain the current subtitle, followed by the date
and time. If no clock card is available to set the ProDOS time word to
the current time, the Assembler prints blanks instead of the time.

In addition to setting a new subtitle, SBTL also causes a page break.

Using Macros in Assembly-Language Programs

The MACLIB directive enables you to use the Assembler's disk-based MACRO
capability, and tells the Assembler on which disk the macro definitions
are stored. The Assembler supports macro definitions that you have

Using Macros in Assembly-Language Programs Page 115

created before the assembly and stored on disk. You cannot define
macros within your program source file.

MACLIB pathname

where pathname is the pathname of the subdirectory that contains the
MACRO files.

Each macro is a separate ProDOS text file. Before assembling, set the
prefix to the path of the subdirectory that contains the macro files.

When you use the MACLIB directive in your program source file, you tell
the Assembler that you may use macros later in your source file. Once
macros are enabled, the Assembler assumes that any mnemonic you use in
your source file that is not a standard 6502 instruction or Assembly
directive mnemonic is the name of a macro definition that resides on
this disk.

Invoking Macros in a Source File

To invoke a macro in your program source file, include the name of the
macro in the mnemonic field of an assembly statement, just as you would
any other mnemonic. This macro name must be the name of a ProDOS text
file that resides on the disk volume you specified in your earlier
MACLIB directive. You can include operand expressions in the operand
field of these assembly statements, but you cannot include a comment.

When the Assembler encounters a mnemonic that does not match either a
standard 65@2 instruction or an Assembly directive, the Assembler
suspends its assembly of the current source file, preserves any
necessary information, and attempts to read a file from the macro disk
having the same mnemonic name as the file name. If this macro
definition file doesn't exist, the Assembler signals the error and
cancels the assembly.

The Macro Definition File

The macro definition file is a text file consisting of regular 6502
assembly statements. There are no special MACRO directives that you
must use in defining a macro. You can specify string parameters that
the Assembler will use in expanding the macro invocation in your source
program.

When you invoke a macro in your program source file, you can specify up
to nine string parameters in the operand field of the statement
containing the macro name. These string parameters must be separated by
commas. The Assembler parses this operand field, using the comma as the
delimiter, and substitutes these string parameters into your macro
definition where you have specified. Two commas with no characters
between them signify a null parameter. You cannot pass a comma as part

Page 116 Chapter 3: The 6502 Assembler

of a string parameter except as a numeric constant; that is, as $2C or
$AC.

In the macro definition file that you previously created on the macro
source disk, you can indicate where these string parameters are to be
substituted by using the two-character sequences &l through &9. The
Assembler replaces these two—character sequences with the characters of
the first through ninth string parameters, respectively. If you
reference a parameter in your macro definition that you did not supply
when you invoked the macro in your source file, the Assembler replaces
that parameter with zero (no) characters. You can use any number of
'&én' parameters within a macro statement or within a single field of a
statement.

Here 1s an example of a macro definition:

LDA &l
CLC

ADC &2
STA &3
LDA &1+l
ADC &2+1
STA &3+41

If you save this sample macro definition into a file with the name
ADD16, you can invoke the macro as shown in this example:

MACLIB ; ENABLE MACROS
VALUL EQU $FA
VALU2 EQU $FB

SUM EQU $FC
dkkkkdhkhkidkdkkkk

; INVOKE ADD16 MACRO BELOW
ADD16 VALUI,VALU2,SUM

Using Macros in Assembly-Language Programs Page 117

When you assemble this source program, the Assembler will expand this
macro and substitute the three parameters into the macro definition,
where you have indicated. This macro expansion will appear in your
assembly listings as shown in the following example:

1 MACLIB ; ENABLE MACROS
2 VALU1 EQU $FA

3 VALU2 EQU $FB

4 SUM EQU $FC

5 kkkdkkkkkkkkkkkk

i® ; INVOKE ADD16 MACRO BELOW

11 ADD16 VALU1,VALU2,SUM
1+ LDA VALU1

2+ CLC

3+ ADC VALU2

4+ STA SUM

5+ LDA VALUl+1

6+ ADC VALU2+1

7+ STA SUM+1

The Assembler always lists the macro expansion following the assembly
statement that invokes the macro (line 11). The lines of an expanded
macro are indicated in the assembly listing by the plus character +)
following the line number. To suppress the printing of macro expansion
lines, use the LST NOEXP directive.

Note that the Assembler substituted the &1 argument with the first
string parameter (VALUl), and so on for all of the macro parameters.

The process of substituting macro parameters must not produce an
assembly statement longer than 255 characters. This can happen if you
attempt to insert a large number of long string parameters into a long
macro statement. You may also encounter this problem if you use a macro
statement with a long comment field.

The Assembler supports two special features to help you use macros.

These are the &P and &X parameters. The following paragraphs describe
how you can use these parameters within your macro definitions.

The &p Parameter

You can use the &P parameter in your macro definition to represent the
number of parameters present in the assembly statement that invokes this
macro. The Assembler always counts the number of parameters present in
the operand field of the statement invoking the macro, and substitutes
this single-digit number wherever it finds the &} parawmeter in your
macro definition.

Page 118 Chapter 3: The 6502 Assembler

You would typically use this &P parameter within a conditional assembly
statement in your macro definition, either to validate the macro
invocation or to create flexible macro definitions,

The &X Parameter

You can use the &X parameter (uppercase X only) in your macro
definitions to represent a cumulative count of the number of times that
you used any macro during this assembly. The Assembler substitutes a
1- to 4-digit numeric string for each occurrence of the &X parameter,
starting with the string 1 and increasing this number by one each time
you invoke a macro during your assembly.

The &X parameter lets you automatically generate unique labels within a
macro expansion, even if you invoke the macro definition many times.
All of the labels you generate using the &X parameter appear as
individual entries in the symbol table and appear in the symbol table
dump listing.

You can use the &X parameter in your macro defiunition by appending it to
some label prefix or embedding it inside a label, as shown in this
example:

LDY #5
F&XL STA &1,Y

DEY

BNE F&XL

o N -

This example shows &X embedded in a label. The Assembler will create
the unique labels FlL, F2L, and F29L when this macro is used as the
first, second, and twenty-ninth macros of an assembly.

Page 119

Chapter 4

The Bugbyter Debugger

Page 120

Chapter 4

The Bugbyter Debugger

123 About This Chapter

124 Overview

125 Restrictions on Using Bugbyter
126 Tutorials

127 Getting Started

127 The Master Display

128 The Register Subdisplay

129 The Stack Subdisplay

130 The Code Disassembly Subdisplay

130 The Memory Cell Subdisplay

131 The Breakpoint Subdisplay

131 The Bugbyter Command Line

133 Typing and Editing Bugbyter Commands
134 Loading Your Program

135 Single-Stepping Through Your Program
139 Using the Memory Subdisplay

141 Tracing Your Program

142 Changing Your Program in Memory

144 Viewing a Page of Memory

145 Using Bugbyter

146 Relocating the Bugbyter Program

146 Entering the Monitor

147 Restarting Bugbyter

147 Memory and the Bugbyter Displays

148 Using the Memory Subdisplay

148 Viewing the Memory Page Display

15¢ Altering the Contents of Memory

151 Altering the Contents of Registers

152 Altering Bugbyter's Master Display Layout (SET)
154 Controlling the Execution of Your Program
154 Using Single-Step and Trace Modes

155 Single-Stepping Your Program

156 Using Trace Mode to Trace Subroutines
156 Setting Transparent Breakpoints

158 Using Breakpoints

158 Clearing Transparent Breakpoints

159 Adjusting the Trace Rate

159 Using Display Options in Trace and Single-Step Modes

Chapter 4: The Bugbyter Debugger Page 121

162 Using Execution Mode

162 Real Breakpoints

163 Debugging Your Program in Execution Mode

164 Debugging Real-Time Code

166 NDebugging Programs That Use the Keyboard and Display

166 Eliminating Contention for the Screen

167 Eliminating Contention for the Keyboard

168 Using Paddle Button @ to Control Trace Mode
169 Using Paddle @

169 Executing Undefined Op-Codes

Page 122

Page 123

Chapter 4

The Bugbyter Debugger

About This Chapter

Every assembly-language programmer eventually rums up against a newly
written or revised program that just doesn't work as intended. This
isn't any reflection on the programmer; everyone occasionally overlooks
something or omits an essential instruction, resulting in a program
"bug. "

This chapter describes how to use the Bugbyter program to test your
assembly-language programs and eliminate errors. Testing and changing a
program to eliminate errors is called debugging.

By the Way: According to computer pioneer Grace Murray
Hopper, the first computer bug was discovered at Harvard in
1945. Hopper and her associates were having trouble with
the Mark I, the first large-scale digital computer. The
problem turned out to be a moth that had died in the
circuits. Ever since, computer problems have been called
bugs.

A real test of your programming skill is how quickly you can locate
problems in your programs and fix errors to produce a working program.
With the proper tools, testing and fixing a program should be easy and
efficient, allowing you to produce error-free, quality software.

The Bugbyter program is a powerful display-oriented debugging tool that
can save you considerable time in testing and debugging your
assembly-language programs. Using Bugbyter for just a few minutes, you
can observe precisely how your program is executing, and to locate where
things are going wrong.

Page 124 Chapter 4: The Bugbyter Debugger

The Bugbyter program is also a useful tool for testing and verifying a
working program to make sure that it will operate correctly under a
variety of conditions.

This chapter consists of three main parts:

- An Overview that introduces the features of the Bugbyter
program, describes how Bugbyter can help you debug your
programs, and describes some restrictions on the use of
Bugbyter.

- A series of tutorials on using Bugbyter, in which you test the
assembly-language program you created in the tutorials in the
previous chapters.

- A Reference Section describing in detail how to use all of
Bugbyter's features while testing and debugging your programs.

In addition, Appendix C contains a summary of all of Bugbyter's
functions and commands.

Overview

Bugbyter lets you load and control the execution of your
assembly-language program on any Apple II system. You can use Bugbyter
to test and debug almost any assembly-language program, as long as your
Apple II's memory has enough room for both your program and Bugbyter.
For the greatest flexibility in debugging assembly-language programs,
you can load and execute the Bugbyter program almost anywhere in memory.
This relocation feature is discussed later in this chapter.

Bugbyter allows you a variety of options to use when debugging your 6502
assembly-language programs.

At any time while you are debugging your program, you can view the
status of the 6502 registers, stack, and memory as they appear to your

assembly-language program.

When you are debugging internal portions of your program and you do not
need to view the programmed displays, you can use Bugbyter's Master
Display to show you

- All of the Apple's 65¢2 internal registers
- A portion of the Apple II's program stack

~ A mnemonic disassembly of portions of your assembly-language
program

Overview Page 125

- ©Portions of your computer's memory
- Any real or transparent breakpoints that you may set.

Using Bugbyter, you can step through your program one instruction at a
time, observing all the effects of executing each instruction. If you
want, you can alter the layout of Bugbyter's Master Display to show you
more or fewer stack or memory locations, program statements, or
breakpoints.

At any time, you can also change the conditions under which you are
testing or debugging your program. For example, you can

~ Change the contents of any 6502 register

- Alter the contents of memory locations or the stack to change
data values that may be stored there

- Alter instructions or parts of your program and immediately
test any revisiouns in your program.

To quickly fix or change the 65@2 assembly-language instructions that
make up your program, you can enter 6502 assembly-language mnemonics
directly into your Apple II's memory. Bugbyter translates these
mnemonic instructions and stores the actual machine codes into the
memory locations that you select.

To test programs that use real-time operating system routines, or to
test portions of your own programs that must execute in real-time, you
can indicate to Bugbyter regions of code that must execute in real-time.
Bugbyter allows you to test these programs using all of its debugging
facilities, while still allowing these portions of your program to
execute at the full speed of the 6502 CPU.

Using Bugbyter's Master Display and the other features of this debugging
tool, you will be able to quickly test, debug, and fix your
assembly-language programs.

Restrictions on Using Bugbyter

You can use Bugbyter to test and debug any assembly-language program as
long as your own program leaves a contiguous block of memory 6940
($1BIC) bytes long somewhere in your Apple II's memory. This memory is
needed to contain the Bugbyter program code and data areas. Bugbyter
also uses the first 32 ($20) bytes of the Apple II's stack (memory
locations $16® to $11F), although this should not cause problems unless
your own program alters the contents of the beginning of the stack.

Page 126 Chapter 4: The Bugbyter Debugger

WARNING
Unless you specify a starting address with the BRUN command,
the Bugbyter program will load starting at memory address

$2000.

The section "Relocating the Bugbyter Program" (later in this
chapter) explains how to relocate Bugbyter to prevent any
conflicts with your own program.

If programs for your Apple IIe system use bank-switching to extend the
usable memory, Bugbyter must remain resident in memory at all times.
Although you can debug programs that use bank-switching, you cannot swap
Bugbyter out of the usable memory space while you are debugging.

Allowing for these memory restrictions, there are few programs that
Bugbyter cannot be used to test and debug.

Tutorials

These short tutorials show you how to use Bugbyter and many of its
commands to test the operation of the short program you created and
assembled in the tutorials in the previous chapters. You will test your
program to verify that it works as you intended, and modify it if
necessary to make it execute differently.
To use these tutorials, you need
~ An Apple II system.
-~ The ProDOS Assembler Tools disk containing the Bugbyter program
and the TESTPROGRAM.{ binary (BIN) file that you created as
part of the tutorial in Chapter 3.
These tutorials teach you how to
- Start Bugbyter
- Use Bugbyter's Master display
- Load your assembly-language object program from disk

- Test your program using the Single-Step and Trace modes

- Change your program and test it again.

Tutorials Page 127

Tutorial 1. Getting Started

1. Insert the ProDOS Assembler Tools system disk into disk
drive 1, and turn on your Apple II. After the ProDOS operating
system is loaded from the disk, the Applesoft prompt (])
appears.

2. Type
BRUN BUGBYTER

and press RETURN. Your Apple II loads the Bugbyter program.

The Master Display

Once Bugbyter is loaded, its Master Display appears on the screen. This
display is divided into six subdisplays, all described on the following

pages.

With Bugbyter loaded, you are in Bugbyter Command Level. You should see
a display similar to the one shown on the next page:

Page 128

Chapter 4:

The Bugbyter Debugger

c

1F9:
1FA:
1FB:
1FC:
1FD:
1FE:
1FF:
100:
191:
102:
193:
104:
195:

po0Q:

Po99
ppop

PPee:
Ppp0:

:(C)

R B PC

cl
Fl
09
g1
g1
9D
37
FF
FF
FF
FF
FF
FF

4C L B
t4C L 1
t4C L 2
4C L 3
4C L 4

A X Y S P NV-BDIZC
opPp 09 O @PPG PP PP PP FF 02 PPIPPR1H

POINT
ppoo
P00
Po00
p000

COUNT
ppoo
pooo
poop
pooo

TRIG
ppop
pooo
popp
ppoo

BROKE
poop
pooo
poog
pone

1982 COMPUTER-ADVANCED IDEAS V2.¢3

Your Bugbyter Master Display may be slightly different from the one

illustrated.

The Register Subdisplay

In the Register subdisplay at the top of the screen, Bugbyter displays
the six 6502 registers and three Bugbyter registers.

R B PC

A X Y S P NV-BDIZC
¢¢¢o P 0 PPRS B0 PP P9 FF 02 POPPRPO1P

Tutorials Page 129

The 6502 registers are

PC (Program Counter)

- A (A-Register)

- X (X-Register)

- Y (Y-Register)

- 8 (Stack pointer)

- P (Processor Status Register)
In the upper right coraner of this display, Bugbyter displays the
Processor Status Register in both two-digit Hexadecimal notation (P) and
binary (NV-BDIZC), where the individual flags are

- N (the Negative flag)

- V (the Overflow flag)

~ B (the Break flag)

- D (the Decimal flag)

- I (the Interrupt flag)

- Z (the Zero flag)

C (the Carry flag)

The Bugbyter registers in the upper left corner of the display are
explained later in this Chapter. They are

- C (the Cycle Count)
- R (the Trace Rate)

- B (the Breakpoint flag, either O (Out) or I (In))

The Stack Subdisplay

Bugbyter's Stack subdisplay is a window into the 65@2 memory stack.
This Stack subdisplay contains the ascending addresses of memory
locations just before and after the location pointed to by the 6502
Stack Pointer, showing the contents of each byte in a portion of the
stack:

Page 130 Chapter 4: The Bugbyter Debugger

1F9: Cl
1FA: Fl
1FB: 0@
1FC: @1
1FD: @1
1FE: 9D
1FF: 37
100: FF
191: FF
192: FF
143: FF
1p4: FF
145: FF

Bugbyter always highlights the line in this subdisplay that represents
the current location of the 6502 Stack Pointer.

The Code Disassembly Subdisplay

To the right of the Stack subdisplay is the Code Disassembly subdisplay.
Bugbyter uses this window to display a disassembly of your program's
code, using standard 6502 assembly mnemonics and address mode syntax.

The Disassembly subdisplay now on your screen is blank. The first line
of the Disassembly subdisplay might read:

1000: LDY #$CP AD CP

where
1000 is the address of the instruction
LDY is the 65¢2 instruction mnemonic
#sCp represents the instruction operand
AD CP are the actual machine~instruction bytes in memory.

The actual machine-instruction bytes (A® CP) are displayed as one of
Bugbyter's information display options. As you trace or single-step
through your program, you can select one of seven display options for
Bugbyter to display. These options are described later in this chapter,
in the section on Trace mode.

The Memory Cell Subdisplay

In its Memory Cell subdisplay, Bugbyter displays the contents of a
number of memory locations that may be important to your program. You
can use the MEM command (described later, in the sections on viewing and
altering memory) to select the addresses of individual bytes or

Tutorials Page 131

byte-pairs that Bugbyter will display continuously in this portion of
the Master Display.

The Breakpoint Subdisplay

Bugbyter allows you to set a number of program breakpoints that you can
use to control the execution of your program. Bugbyter displays these

breakpoints and relevant breakpoint information in the Master Display's
Breakpoint subdisplay, just below the Code Disassembly subdisplay.

BP POINT COUNT TRIG BROKE
1 0p0p 0000 0000 DO0P
2 Q000 0000 0000 0PD0
3 p000 0009 DOPD POPD
4 popp 9000 000D BDDY

Breakpoints and other debugging techniques are described in the section
"Controlling the Execution of Your Program,' later in this chapter.

The Bugbyter Command Line

On the last line of the display is the Bugbyter command line. It now
contains a brief copyright notice. The blinking cursor just after the
colon (:) prompt signifies that Bugbyter is ready to accept commands
from you.

Having loaded the Bugbyter program, you are in the Bugbyter command
level. You can reach many of Bugbyter's features directly from command
level. To reach others, you must use commands that place you in one of
Bugbyter's three debugging modes.

Outlined on the next page are the five Bugbyter modes and the things
that you can do in each mode.

Page 132 Chapter 4: The Bugbyter Debugger

These are the five Bugbyter modes:
1. Bugbyter Command Level, in which you can do the following:
- Execute ProD0OS commands, for example BLOAD programs.

- View or alter contents of memory, entering hexadecimal values,
character codes, or 65§22 assembly code.

- Change the contents of the 6502 or Bugbyter registers.
~ Enter Applesoft/ProD0S or the Monitor.
- Alter the layout of the Bugbyter Master Display.
- Set and clear breakpoints,
- View areas of memory, using Bugbyter's Memory Page Display.
- Enter one of Bugbyter's three debugging modes.
2., Memory Page Display Mode, in which you can:

- View or alter contents of memory, entering hexadecimal values,
character codes, or 6502 assembly code.

3. Single-Step Mode, in which you can:
- Single-step, or execute your program one instruction at a time.

- View Bugbyter's Master Display, or your Apple II's
low-resolution, high-resolution, or normal text screens.

4, Bugbyter Trace Mode, in which you can:
~ Trace your program's execution, updating Bugbyter's Master
Display after each instruction, scanning for RTS opcodes or

transparent breakpoints.

- View Bugbyter's Master Display, or your Apple Il's
low-resolution, high-resolution, or normal text screens.

5. Bugbyter Execution Mode, in which you can:

- Execute your program directly on the 6502, using real
breakpoints to control execution.

Tutorials Page 133

Typing and Editing Bugbyter Commands

To enter a command at the Bugbyter Command Level, simply type the
characters to form the command, then press RETURN.

To make a correction, use the LEFT ARROW or RIGHT ARROW key to place the
cursor over the incorrect character. Then you can

- delete the character, by pressing CONTROL-D

- replace the character with a different one, by typing a new
character over the old one.

To move the cursor to the beginning of the command line, press
CONTROL—-B; to move it to the end of the line, press CONTROL-N.

To insert characters, use the LEFT ARROW or RIGHT ARROW key to move the
cursor to the character before which the insertion is to be made. Press
CONTROL-I, and type the new characters. End the insertion by pressing
LEFT ARROW, RIGHT ARROW, or RETURN.

To enter a control character onto the command line, for storing
character-string information into memory, press CONTROL-C before typing
the control character.

To erase an erroneous line, press CONTROL-X.

When you have finished editing the line, press RETURN. This causes
Bugbyter to accept all of the characters on the command line.

Before You Press RETURN: If there are unwanted characters to
the right of the cursor, use CONTROL-D to delete them, or
press the SPACE bar to replace them with spaces.

The following table summarizes Bugbyter's editing functions and the
keystrokes that invoke them.

Page 134 Chapter 4: The Bugbyter Debugger

Editing Function Keystroke

Move cursor left one character LEFT ARROW

Move cursor right one character RIGHT ARROW

Move cursor to beginning of line CONTROL-B

Move cursor to end of line CONTROL-N

Delete entire line CONTROL-X

Delete current character CONTROL-D

Insert characters CONTROL-I

Enter a control character CONTROL-C, then any character
Accept the current line as typed RETURN

Tutorial 2. Loading Your Program

Having loaded Bugbyter and viewed the Master Display, you need to load
your program into memory. You will use the ProD0OS BLOAD command to do
this. You will then be able to use Bugbyter to debug your program. To
enter any ProDOS command while you are using Bugbyter, simply type a
period (.) before you type the command.

1. Type
«BLOAD TESTPROGRAM.{
Remember to type a period (.) before typing the ProDOS command.
TESTPROGRAM.P is the binary file you created when you did the

tutorial in Chapter 2,

After your Apple 1I has loaded TESTPROGRAM.§ into memory, you
will again see the blinking cursor.

2. To view the program that you just loaded into memory, type
1990L
and press RETURN.
If you type 1f0PL, Bugbyter fills the Disassembly portion of
your screen with the first few instructions of your program,
starting with the instruction at address $100@.
As TESTPROGRAM.f is a short program, you will be able to see

the entire program on the screen at once. It should look
similar to the display on the next page.

Tutorials

Page 135

1099:
1092:
1004
1997:
1908:
100A:
190C:
199D
100E:
100F:
1912:
1913:
1814:

LDY
LDX
JSR
INX
CPX
BNE
RTS
INY
TYA
STA
RTS
BRK
BRK

#sco
#5009
$100D

#505
$10p4

$1100,X

AP
A2
20
E8
ED
DY
60
c8
98
9D
60
)
0

co
0P
gD 19

95
F8

g1 11

3. Check the instructions in your program to verify that your
program was assembled correctly in the previous chapter. Don't
worry if you see different values in the Stack subdisplay; this

is normal.

Tutorial 3. Single-Stepping Through Your Program

Bugbyter lets you watch the execution of your program one instruction at
a time, seeing the results of each instruction.

1. To begin single-stepping your program at address S1000, type

1699s

Bugbyter highlights the LDY instruction that appears at address
$19pP, and the program counter (PC) on the top line of the
screen shows the address 1900.

Page 136

Chapter 4: The Bugbyter Debugger

c

pppg 99 o

1F9:
1FA:
1FB:
1FC:
1FD:
1FE:
1FF:
190:
101:
192:
193:
104 :
105:

R B PC A X Y S P NV-BDIZC

cl
F1
Po
Pl
P1
9D
37
FF
FF
FF
FF
FF
FF

1090 00 00 09 FF 02 PEPPPPLP

10¢p: LDY #SCO
10¢2: LDX #3909
1¢¥04: JSR $19¢D

Note that no instructions of your program have been executed,
and none of the registers has been changed, except the PC
register.
Y-register with the value $CP, as indicated by the highlighted
LDY instruction on the Master Display.

The first instruction to be executed is to load the

To execute this LDY instruction, press the SPACE bar. Bugbyter
executes this instruction and updates the display.

Tutorials Page 137

c R B PC A X Y S P NV-BDIZC
0009 00 0 1062 99 @9 CP FF BY 10119909

1F9: Cl

1FA: Fl

1FB: 99

1FC: @1

1FD: @1

1FE: 9D

1FF: 37

100: FF

191: FF

102: FF 1p99: 1LDY #SCP P: 1911000
143: FF 19@2: LDX #5080
104: FF 1PP4: JSR $190D
185: FF 1097 INX

@PPP:4C L BP POINT COUNT TRIG BROKE
pogp:4Cc L 1 0000 000D PPPD PPPP
poPP:4C L 2 4000 PPOD PPOD PO
poPp:4C L 3 0000 00Pp 000D PP
pppP:4C L 4 0PPD 0PPP 000D PP

SINGLE STEP

Note that the program counter has increased to 1092, and that
register Y has been loaded with the hex value Cf. 1In the
Disassembly subdisplay, the disassembled instructions have
shifted and the highlighted bar is now highlighting the
instruction at address 19P2, the next instruction to be
executed. Bugbyter has also displayed the processor status
register (in binary) to the right of the imstruction that was
just executed.

3. The next highlighted instruction loads the X-register with the
value S$#@. Press the SPACE bar to execute this instruction.

Page 138 Chapter 4: The Bugbyter Debugger

C R B PC A X Y S P NV-BDIZC
o000 00 0 1004 PP 0P CP FF 32 PPL1PP1P

1F9: Cl

1FA: F1

1FB: 09

1FC: §1

1FD: P01

1FE: 9D

1FF: 37

1909: FF

191: FF 1900: LDY #SCP P: 10110000
1¢2: FF 19@P2: LDX #$90 P: 00110810
193: FF 19p4: JSR $1¢4D

14: FF 1907 INX

1¢5: FF 1898: CPX #3085

PppP:4C L BP POINT COUNT TRIG BROKE
pePP:4C L 1 Q000 P00 0O0D DPDP
ppRg:4C L 2 PO00 0000 POPD DPPPD
peP@:4Cc L 3 Q000 OO0 00PP DPOP
pepP:4C L 4 P00 PP0D 000D PPPD

SINGLE STEP

Verify that the X-register now contains the value $§@. The
next instruction is a jump-to-subroutine instruction that calls
the STORE subroutine at address 19¥¥D. This JSR instruction
will change the contents of the stack pointer as well as the
program counter. Press the SPACE bar to execute this
instruction.

Bugbyter executes this instruction and calls the subroutine at
1¢¢D. Note that the program counter (PC) contains the address

10¢D.

Note that the stack pointer (S) has changed to FD and that the
stack subdisplay has shifted down. The stack pointer points to
the location identified by the highlighted bar. Also note that
the two-byte address that has been pushed onto the stack (the
#6 and 1@ bytes just below the highlighted bar) form the
low-byte and high-byte of the address (1§P6) of the last byte
of the JSR instruction.

Page 139

Tutorials
c R B PC A X Y S P NV-BDIZC
p000 60 0 1094 0P 09 CO FF 32 9PL19010
1F7: 43
1F8: D4
1F9: Cl
1FA: F1
1FB: 00
1FC: @1
1FD: 91
IFE: @#6 1p0@: LDY #SCP P:10110000
IFF: 1§ 1992: LDX #$0¢ P:0@11901¢
190: FF 1¢P4: ISR $19@¢D P:P0L110P10
1¢1: FF 1§@D: INY
192: FF 1@@E: TYA
1$3: FF 1P@PF: STA $1190,X
PPPP:4C L. BP POINT COUNT TRIG BROKE
ppPP:4C L 1 0000 000D 000D OP0P
pPed:4Cc L 2 0000 0000 00RO PPPY
opPp:4C L 3 0000 P00 000D PPOP
POPB:4C L 4 QOO 0000 000D 0POP

SINGLE STEP

Execute the next two instructions by pressing the SPACE bar
These instructions
increment the contents of the Y-register and transfer the

twice (once for each instruction).

contents of the Y-register to the A-register.

To verify the

operation of these instructions, watch the Register subdisplay.

Tutorial 4.

Using the Memory Subdisplay

The next instruction to be executed is STA $1198,X, which stores the
value in the A-register into memory address $110@ (if you were to press
the SPACE bar right now, you would execute this instruction and store
Before executing this instruction, though,

the value $Cl into memory).

we will use the Memory subdisplay to verify that the proper value gets
stored in memory.

1.

Press ESC to exit from Bugbyter's Single-Step mode and return
You should see the colon command prompt and

to Command Level.

blinking cursor of Bugbyter's Command Level.

Page 140 Chapter 4: The Bugbyter Debugger

2.

Type MEM and press RETURN. The blinking cursor appears in the
first position of the Memory subdisplay.

Fach cell of the Memory subdisplay consists of an address,
followed by a colon and the hex value of the byte stored in
that memory location. After the hex value is the Apple
character that corresponds to that hex value.

2090 : 4C
P00 :4C
POP9:4C
P0P0:4C
POPP:4C

[l e

:MEM

To set a particular memory address in this first memory cell,
type 11@@. The address 11¢@ appears in the first memory cell
of the Memory subdisplay, followed by the byte currently stored
in that memory location. The blinking cursor moves to the next
memory cell.

To enter the addresses of the next four memory locations, type
1191 1192 1193 11P4. You now have loaded the addresses of five
consecutive memory locations into the Memory subdisplay. (As
you later execute your test program, your program will fill
each of these memory locations with an Apple character code.)

If you make a mistake typing the addresses, don't worry-—just
press RETURN to move the blinking cursot to the memory cell
with the address you want to change, and type the new address
over the old. When you are finished, press ESC to returm to
the Bugbyter Command Level.

To return from the Bugbyter Command Level to Single-Step mode
and execute the next instruction, type S and press RETURN.
Bugbyter executes the next instruction of your program, storing
the value $Cl into the memory location $11f@. To verify that
this value actually was stored, look at the value shown in the
Memory subdisplay for that address.

Tutorials Page 141

1140:C1 A
1191:00 @
1102:99 @
1193:09 @
1104:00 @

SINGLE STEP

Tutorial 5. Tracing Your Program

To make sure that the rest of your program operates as it should, we
will trace the rest of the program, rather than single-step through it.
When Bugbyter traces your program, Bugbyter updates the Master Display
after executing each instruction. You can watch your program fill the
memory location $1101 to $1104 with the codes for the characters 'B"
through "E."

.

To trace the remainder of your program, press RETURN while you
are in Bugbyter Single-Step mode. You should see the words
SINGLE STEP on the Bugbyter command line before pressing
RETURN. After you press RETURN, Bugbyter replaces this with
the word TRACE (for Trace mode).

Bugbyter TRACEs the rest of your program, executing each
instruction in turn. You can watch the Bugbyter Master Display
change as Bugbyter executes your program. When Bugbyter
finishes executing your program, it will stop.

To verify that your program correctly loaded the five
characters "A" through "E" into the memory locations $119¢
through $11¢4, look at the Memory subdisplay.

1194:C1 A
1191:Cc2 B
11¢2:c3 C
11943:C4 D
11064:C5 E

Page 142 Chapter 4: The Bugbyter Debugger

Tutorial 6. Changing Your Program in Memory

You can use Bugbyter to change your program in memory. This lets you
immediately test new versions of your program without having to leave
Bugbyter and use the Editor/Assembler to edit and reassemble your source

program.

For example, let's change the first instruction of your program, at
address 1998, to LDY #500.

1. At the Bugbyter Command Level, type
1900: LDY #$S09
and press RETURN.
Note that you must follow the address you have typed with a
colon (:) before you type the assembly~language instruction
mnemonic.
2. To see how your entire program looks now, type
10091
and press RETURN.
Notice that address $10@® now contains the new instruction.
It is also possible to change just one byte in your program.
Notice from the disassembly subdisplay that address $1899 (the
count limit used in controlling the program loop) has the value
$$5. To change the number of times that your program runs
through this loop, let's change this limit to $Ch.
3. At the Bugbyter Command Level, type
1999: C@

and press RETURN.

Note again that you must use a colon after the address as you
did when changing an entire instruction.

4, To view your new program, type
1990L
and press RETURN.

Bugbyter displays your new program in its Disassembly
subdisplay: :

Tutorials Page 143

c R B PC A X Y S P NV-BDIZC
009 P9 0 196C C5 @5 C5 FF 33 @P119411

1F9: C1 10¢@: LDY #5090 AD 0P
1FA: F1 18@2: LDX #3009 A2 09
1FB: 89 1094: JSR $199D 20 9D 19
1FC: 91 1997: INX E8

1FD: @1 1pP8: CPX #S$CO E@ CO
1FE: 9D 19PA: BNE $1004 D@ F8
1FF: 37 1#6C: RTS il

169: FF 19PD: INY c8

1¢1: FF 189E: TYA 98

1¢2: FF 1¢9PF: STA $11¢9,X 9D @1 11
1¢3: FF 1§12: RTS 60

1§4: FF 1§13: BRK)

1¢5: FF 1P14: BRK il
11¢@:C1 A BP POINT COUNT TRIG BROKE
1191:C2 B 1 0000 0000 0000 0P0P
1192:C3 C 2 Q0000 000D 00P0 OPPP
1193:C4 D 3 0900 0000 000D 0P0P
1194:CS E 4 0000 0PpD 00p9 0900

5. To trace this new version of your program, type
19097
and press RETURN.

Bugbyter begins tracing your new program, starting at
location $1009.

It now takes Bugbyter about 3@ seconds to trace your entire program, as

you have made your program execute the program loop many more times than
before. You can watch the X-register count how many times your program

has gone through the loop.

Page 144

Tutorial 7.

Viewing a Page of Memory

Chapter 4:

The Bugbyter Debugger

The modified version of your program fills nearly a page of memory with
the first 192 bytes of the Apple character set.
Memory Page Display to view this area of memory.

1.

You can use Bugbyter's

When Bugbyter has finished tracing your program, type

11

00 :

and press RETURN.

Bugbyter replaces the Master Display with its Memory Page
a screen of memory information for memory starting at

Display:

location $1108.

Because your program executed the loop $C@
(decimal 192) times, you will see much of the Apple character
set displayed, including inverse-video and blinking characters.

1190:
1198:
1110:
1118:
1120:
1128:
1139:
1138:
1140:
1148:
11560:
1158:
1160:
1168:
1179:
1178:
118¢:
1188:
1199:
1198:
11A0:
11A8:
1180:

g1
99
11
19

29
31
39
41
49
51
59
61
69
71
79
81
89
91
99
Al
A9
Bl

P4
¢c
14
1c
24
2C
34
3C
44
4C
54
5C
64
6C
74
7C

8C
94
9c
A4
AC
B4

85
#D
15
1D

2D
35
3D
45
4D
55
5D
65
6D
75
7D
85
8D
95
9D
A5

B5

$6
)
16
1E
26
2F
36
3E
46
4E
56
5E
66
6F
76
7E
86
8E

9E
A6
AE
B6

@7
oF
17
IF
27
2F
37
3F

4F
57
5F

6F
77
7F
87
8F
97
9F
A7
AF
B7

ABCDEFGH
TIJKLMNOP
QRSTUVWX
YZ[\]°

1ESTE (
)*+’-°/¢
12345678
9:;<=>17@
ABCDEFGH
TJKLMNOP
QRSTUVWX
YZ[\]"

1"#S%E (
Yet, -/
12345678
9:;<=>17@
ABCDEFGH
IJKLMNOP
QRSTUVWX
YZ[\]"

1"#s%E (
)*+’_0/¢
12345678

Tutorials Page 145

2. To return to the Bugbyter Command Level, press ESC;
or,

to exit Bugbyter and return to Applesoft/ProbDOS, type QUIT and
press RETURN.

Using Bugbyter

The remainder of this chapter describes in detail each of Bugbyter's
debugging functions (the preceding tutorials have already introduced you
to some of these). They include

- Starting, relocating, and restarting Bugbyter
- Viewing and altering memory or 65@2 registers
- Altering Bugbyter's Master Display layout

~ Controlling the execution of your program with debugging
techniques such as

Single-Step mode;
Trace mode and transparent breakpoints
Execution mode and real breakpoints

~ Debugging real—-time code
- Debugging programs that use the keyboard and display.

Bugbyter is a 6.8K ($1BIC bytes) binary program that must be fully
resident in memory to be used to test or debug programs. Because your
own program must share the Apple II's memory with Bugbyter, be careful
that the two programs do not overlap each other in memory. Appendix H
contains a memory map showing all the locations in which your
assembly-language program and Bugbyter may reside.

Typically, you will simply use the ProDOS BRUN command to load and
execute Bugbyter, just as you did in the tutorial. To recapitulate:
from Applesoft, type

BRUN BUGBYTER

and press RETURN. Your Apple II reads the Bugbyter program from your
disk and loads it into memory locations $2f@@ to S$3BILF.

Page 146 Chapter 4: The Bugbyter Debugger

Relocating the Bugbyter Program

If your own program uses memory locations within the block $20¢@ to
$3B1F, you must relocate Bugbyter to some other memory location. You
can specify any starting address from $8@f to $7AP9 when you type the
BRUN command to execute Bugbyter. For example, to run Bugbyter
starting at location $1088, type

BRUN BUGBYTER,AS1000

and press RETURN. Your Apple II loads Bugbyter and executes it from
locations 1@P through $2BIF.

WARNING

Unless you specify a starting address with the BRUN command,
the Bugbyter program will load starting at memory address
$2000.

By the Way: The Bugbyter program is self-modifying; that is,
once you BRUN the program at a certain address, Bugbyter
modifies itself to allow itself to execute at that address.
For this reason, if you want to move Bugbyter around in
memory you should BLOAD Bugbyter before moving it, rather
than BRUNning it.

For example, if the program you are debugging does not
require ProDOS, you might want to run Bugbyter at address
$A4PP to leave more room for your own program. To do this,
BLOAD Bugbyter at some lower address ($20@@, for example),
and then use the Monitor to move Bugbyter to start at
address S$A4PD.

Entering the Monitor

From the Bugbyter Command Level, you can enter the Apple Monitor, to use
the Monitor's block memory moves and other capabilities not provided by

Bugbyter. Your Apple II reference manual describes the features of the

Apple II Monitor.

Using Bugbyter Page 147

To enter the Apple Monitor's command mode, type
M

and press RETURN. After you have finished using the Monitor, return to
the Bugbyter Command Level by pressing CONTROL-Y and RETURN.

Restarting Bugbyter

After exiting Bugbyter for any reason, either into the Monitor or into
BASIC, you can use the Monitor's CONTROL-Y vector to restart Bugbyter,
or you can use Bugbyter's load address.

For example, if you ran Bugbyter by typing
BRUN BUGBYTER,AS4OP0

and pressing RETURN, you can restart Bugbyter from Applesoft BASIC by
typing either

CALL 1016 (This uses the Monitor's CONTROL-Y vector.)

or
CALL 16384 (This uses Bugbyter's specific load address.)

and pressing RETURN.

From the Monitor, you can reenter Bugbyter by pressing CONTROL-Y and
then RETURN.

Memory and the Bugbyter Displays

In this chapter's tutorials, you were introduced to some of Bugbyter's
features for viewing and altering the contents of memory locations and
registers. This section describes these functions in more detail, and
describes how to alter the layout of Bugbyter's Master Display.

You can use Bugbyter in several different ways to view the contents of
memory :

- The Stack and Disassembly subdisplays of Bugbyter's Master
Display show the contents of specific regions of memory. To
select the region that is shown in the Disassembly subdisplay,
use the L (Load) command described in the tutorial.

- To use the Memory subdisplay of Bugbyter's Master Display to
show the contents of several individual memory locations, use
the MEM command (described below) to set particular memory
addresses for each cell of this subdisplay.

Page 148 Chapter 4: The Bugbyter Debugger

~ To display the contents of 184 ($B8) contiguous memory
locations both as hexadecimal values and as Apple characters,
use Bugbyter's Memory Page Display, described below.

Using the Memory Subdisplay

The Memory Cell subdisplay of Bugbyter's Master Display continuously
displays the contents of several individual memory locations that you
select. You can use the MEM command to set the memory addresses in one
or more cells of this display. If you want, you can first use the SET
command (described later in this section) to increase the number of
cells in this subdisplay.

To set addresses in the Memory subdisplay from the Bugbyter command
level, type

MEM

and press RETURN. Bugbyter moves the cursor to the first address at the
top of the Memory subdisplay. You now have two options:

- Type a four-digit hexadecimal address for this memory cell, and
press RETURN.

- Use the LEFT ARROW, RIGHT ARROW, or RETURN key to move the
blinking cursor to another memory cell.

Unless you specify otherwise, Bugbyter displays the contents of each
memory cell both as a hexadecimal value and as an Apple character.

To have Bugbyter instead display the contents of two consecutive
locations (address+l and address) as a four-digit hexadecimal address
pointer (most significant byte first), type P before typing the address
into a memory cell.

To return to the Bugbyter Command Level, press ESC.

Viewing the Memory Page Display

To view an entire screen of memory locations (two thirds of a 6502
memory page), go to the Bugbyter Command Level and type the starting
address of the memory block. Type a colon (:) and press RETURN.

For example, if you had just completed the tutorial and had the Apple
character set in memory at address $1100, typing 11¢9: and pressing
RETURN would command Bugbyter to replace the Master Display with the
Memory Page Display having the address 1180 in the upper left corner.

Memory and the Bugbyter Displays

Page 149

1199: @1 @2
1198: 09 PA
111¢: 11 12
1118: 19 1A
1129: 21 22
1128: 29 2A
113¢: 31 32
1138: 39 3A
1149: 41 42
1148: 49 4A
115@: 51 52
1158: 59 5A
1160: 61 62
1168: 69 6A
117¢: 71 72
1178: 79 7A
118p: 81 82
1188: 89 8A
1199: 91 92
1198: 99 94
11A9: Al A2
11A8: A9 AA

11Bp: Bl B2

93
P8
13
1B
23
2B
33
3B

4B
53
5B
63
6B
73
7B
83
8B
93
9B
A3
AB
B3

P4
9C

1c
24
2C
34
3C
44
4c
54
5C
64
6C
74
7C
84
8C
94
9C
A4
AC
B4

@5
#D
15
1D
25
2D
35
3D
45
4D
55
5D
65
6D
75
7D
85
8D
95
9D
A5

B5

@7 08
oF 16
17 18
1F 29

2F 39
37 38
3F 49
47 48
4F 59
57 58
5F 60
67 68
6F 70
77 78
7F 8¢
87 88
8F 99
97 98
9F AP
A7 A8
AF B
B7 B8

ABCDEFGH
IJKLMNOP
QRSTUVWX
Yz[\]"

1"#8%& (
)*+’_-/¢
12345678
9:;<=>17@
ABCDEFGH
IJKLMNOP
QRSTUVWX
YzZ[\]"

1"#s%& (
Y-, /0
12345678
9:;<=>?@
ABCDEFGH
IJKLMNOP
QRSTUVWX
YZ[\]"

1S (
)*+,_0/¢
12345678

Your display might show different values, depending on the current
contents of this region of memory.

Bugbyter displays the contents of memory in a table with eight memory
The contents of each memory location are shown
first in hexadecimal and then in their equivalent Apple characters.

Fach line of this table starts with the memory address of the first byte
The normal Apple character set is:

locations to a line.

shown on that line.

PP-3F
4p-7F
80-FF

inverse-video characters
flashing-video characters
normal-video characters (two sets
of alphabetic characters)

Bugbyter displays the colon prompt on the last line of this display and
accepts either another address followed by a colon, to display another
memory page, or a memory assignment command. The memory assignment
command is described in the next section.

To return to the Bugbyter Command Level and the Master Display, press

ESC.

Page 150 Chapter 4: The Bugbyter Debugger

Altering the Contents of Memory

You can use Bugbyter to change the contents of any RAM memory location
or sequence of locations in your Apple II. From the Bugbyter Command
Level or from the Memory Page Display, type a hexadecimal address and a
colon, then one of the following:

- One or more hexadecimal bytes

- One or more character strings (enclosed in double or single
quotation marks)

- Combinations of the two above
- 65§2 instruction mnemonics and operands.

You can freely mix hexadecimal numbers and character strings of any
length in your memory assignment commands, separating the items with one
or more spaces.

When you enter character strings, Bugbyter stores each character with
its most significant bit on if you enclose the characters in double
quotation marks (). Bugbyter stores each character with its most
significant bit off if you enclose the character string in single
quotation marks (').

For example, if you type
8¢5: "“HELLO" 8D

and press RETURN, Bugbyter fills the memory locations from $805 to $80A
with the bytes $C8, $C5, $CC, $CC, $C5 ('HELLO"), followed by a byte
with the value of $8D. Because you used double quotation marks to
delimit the character string, the character codes are stored with their
most significant bit on.

Bugbyter also accepts 6502 instruction mnemonics in a memory assignment
command., You must use the standard address mode syntax when specifying
operands, and you must type each assembly-language instruction in a
separate memory assignment command. For example, if you type

1000: LDY #58%

and press RETURN, Bugbyter assembles this statement and stores the two
resulting bytes ($AP and $8¢) in the memory locations $19@@ and $1991.

Whenever you alter a memory location that is currently displayed on
either the Bugbyter Master Display or the Memory Page Display, Bugbyter
immediately updates the display to show the changes.

Memory and the Bugbyter Displays Page 151

Altering the Contents of Registers

The Bugbyter Master Display always displays the current contents of the
6502 microprocessor registers as they would appear to the program you
are debugging. You can change the contents of these registers at any
time, from the Bugbyter Command Level.

To change the contents of a 65p2 register from the Bugbyter command
level, type the name of the register followed by an equal sign (=), type
the value to be stored in the register, and press RETURN. For example,
to set the contents of the A-register to $8D, type

A=8D

and press RETURN. This new value is immediately reflected under the
A-register label in the Register subdisplay. In the same way, you can
change the C-, R-, PC-, A-, X-, Y-, S—, and P-registers to any value you
wish.

Bugbyter's "B" flag is not a register, and you cannot change this flag
by using this register—assignment command. The NV-BDIZC display is just
the binary representation of the P-~register. To change individual bits
in the P-register, you must type P= followed by the appropriate
hexadecimal number.

WARNING

Bugbyter uses the first 32 bytes of the 6502's stack
(locations $1@¢ to $11F), and any attempt by you or your
program to alter the stack pointer to point into this region
could result in a conflict between Bugbyter and the program
you are debugging.

Bugbyter flashes a warning in the Stack subdisplay area if
you or your program sets the stack pointer to any value less
than $20 (because the stack pointer points only to locations
in Page One memory, a stack pointer value of $2p implies a
memory address of $120).

Page 152 Chapter 4: The Bugbyter Debugger

Decimal-to-Hexadecimal and Hexadecimal-to-Decimal Conversions:
To help you when you assign numeric values to memory

locations or registers, or whenever you convert numbers from
one base to another, Bugbyter converts from hexadecimal to
decimal, or from decimal to hexadecimal. For example, from
the Bugbyter Command Level, if you type

§C3=

and press RETURN, Bugbyter converts the hexadecimal number
$C3 to its decimal equivalent and displays this value
following the equal sign:

$C3=pP195

In the same way, you can type hexadecimal numbers without
the dollar sign ($). TFor example, if you type

C3=

and press RETURN, Bugbyter treats this command the same way
it did the $C3= command above.

To convert a decimal number to its hexadecimal equivalent,

precede the decimal number by a plus (+) or minus (-) sign,
to distinguish it from a hexadecimal number. For example,

if you type

+43=

and press RETURN, Bugbyter responds by displaying the
hexadecimal equivalent:

+43=32B

Altering Bugbyter's Master Display Layout (SET)

Bugbyter's Master Display has several subdisplays that let you view many
different items of information at once. You can customize Bugbyter's
Master Display layout to alter the relative sizes of some of these
subdisplays. The SET command lets you do the following:

- Set more or fewer program breakpoints (in the Breakpoint
subdisplay).

Memory and the Bugbyter Displays Page 153

- View larger or smaller portions of your disassembled program
(in the Code Disassembly subdisplay).

- View larger or smaller regions of the memory stack (n the Stack
subdisplay).

- View more or fewer memory cells (in the Memory subdisplay).

To change the relative sizes of these subdisplays, from the Bugbyter
Command Level, type

SET

and press RETURN. Bugbyter displays a sketch of the Code Disassembly
and the Breakpoint subdisplays, and allows you to set the relative sizes
of these displays.

Now you have two options:

- Use the LEFT ARROW key to increase the number of breakpoints
that are displayed, and simultaneously decrease the size of the
Code Disassembly subdisplay.

- Use the RIGHT ARROW key to decrease the number of breakpoints
that are displayed, and simultaneously increase the size of the
Code Disassembly subdisplay.

When you are satisfied with the relative sizes of these subdisplays,
press RETURN to fix their relative sizes as you have selected them.

You can now select where Bugbyter displays the next-instruction-—
to-be—executed bar in the Code Disassembly subdisplay. Use the LEFT
ARROW and RIGHT ARROW keys to adjust the position of the inverse-video
bar within the Code Disassembly subdisplay. The position of this bar
divides the subdisplay among the instructions that have been executed
(above the bar) and instructions not yet executed (at and below the bar)
when you are tracing or single-stepping your program. Press RETURN when
you are satisfied with the bar's position.

Bugbyter then displays a sketch of the Stack and Memory Cell
subdisplays. Use the LEFT ARROW and RIGHT ARROW keys to adjust the
relative sizes of the Stack and Memory subdisplays, just as you did for
the Disassembly and Breakpoint subdisplays.

When you are satisfied with the relative sizes of these displays, press
RETURN to fix these sizes. Then use the LEFT ARROW and RIGHT ARROW keys
to adjust the position of the stack-pointer bar within the Stack
subdisplay. Typically, you will want this bar near the top of the
subdisplay, as information on the stack appears below this inverse-video
bar.

Page 154 Chapter 4: The Bugbyter Debugger

When you are finished, press RETURN to return to the Bugbyter Command
Level.

When you use the SET command, you do not change the contents of the
Memory subdisplay or the Breakpoint subdisplay. You can recover any
Memory cells or Breakpoints that are no longer displayed by using the
SET command to enlarge these subdisplays and display this information
once again.

Controlling the Execution of Your Program

There are as many ways to debug a program as there are ways to write a
program; both are a matter of the programmer's style. This manual is
not intended to teach a particular way to debug your programs any more
than it is intended to teach you a programming style. There are,
however, several techniques for controlling the execution of your
program that are very useful for debugging. This section discusses some
of the techniques that you can use with Bugbyter. They include

~ Single-stepping a program
- Tracing a program

- Executing a program directly on the 6502.

Using Single—Step and Trace Modes

Bugbyter's Single-Step and Trace modes provide a powerful debugging
environment. Bugbyter can trace practically any executable 6502
program, including interrupt— and timing-sensitive code. If you
followed the tutorial at the beginning of this chapter, you have already
found how easy it is to use the Single-Step and Trace modes.

When you enter Single-Step or Trace mode, Bugbyter removes the usual
command prompt from the command line, and replaces it with the words
SINGLE STEP or TRACE. Once you euter one of these modes, you can no
longer type commands at the Bugbyter Command Level. Instead, you can
type a set of single-keystroke commands that give you access to a
variety of debugging features.

These commands are summarized in Table 4-1. To access any of these
debugging functions, you need only type the single keystroke.

Controlling the Execution of Your Program Page 155

Table 4-1. Debugging Commands in
Single-Step and Trace Modes

Trace or Single—Step Operation Keystroke
Return to the Bugbyter Command Level ESC
Single-step (execute) one instruction SPACE bar
Skip the next instruction RIGHT ARROW
Trace the program until a breakpoint or end RETURN
Trace until an RTS instruction is encountered R
Clear the Cycle Count register C
Use Paddle ® to adjust trace rate P
Use Keyboard Rate to adjust trace rate (set

R=value before entering Trace mode) K
Turn off Bugbyter sound (Quiet) Q
Turn on Bugbyter sound S
Display primary Apple screen 1
Display secondary Apple screen 2
Display the Apple text screen T
Display the Apple low-res graphics screen L
Display the Apple high-res graphics screen H
Display the Apple full screen graphics F
Display a mixed graphics screen, with the
Bugbyter command line visible M

To reenter Single-Step mode from the Bugbyter Command Level, type S and
press RETURN. To enter Trace mode, type T and press RETURN., Bugbyter
remembers the last instruction it executed before leaving Trace or
Single-Step mode, and continues from the next instruction whenever you
reenter Trace or Single~Step mode without specifying a starting address.

Single-Stepping Your Program

When you debug a program, you spend much of your time observing the
execution of the program and verifying that it works correctly.
Bugbyter's Single-Step mode (introduced in the tutorial), allows your
Apple II to execute a single instruction at a time, stopping after each
instruction so that you can observe the result.

Page 156 Chapter 4: The Bugbyter Debugger

To enter Single-Step mode from the Bugbyter Command Level, type the
memory address of the first instruction that you wish to execute,
follow it with an S, and press RETURN. In the the tutorial, you typed

19p0s

After you type this Single-Step command, Bugbyter shows, in its Code
Disassembly subdisplay, the first instruction that is to be executed.

To execute this instruction, press the SPACE bar. Bugbyter executes
this single instruction and updates the screen to show you the effect of
the execution of that instruction.

To continue executing instructions, press the SPACE bar for each
instruction to be executed. After Bugbyter executes each instruction,
it updates its Master Display, allowing you to verify that your program
has executed correctly, or showing you exactly where your program has
gone wrong.

Using Trace Mode to Trace Subroutines

Although Bugbyter's Single~Step mode is handy for testing short programs
(or small portions of larger programs), single-stepping through medium
to large programs is rather tedious.

Most good programs contain subroutines. Bugbyter's Trace mode lets

you step through a program one subroutine at a time. You can interrupt
execution at places you specify, letting you observe program results and
the status of registers and the stack. You can skip over portions of
your program that are operating correctly, getting quickly to the
location of a problem.

You can enter Trace mode only from Single-Step mode. To trace your
program until the next occurreunce of an RTS instruction (that is, until
the end of the next subroutine), type

R

while you are in Single-Step mode. Bugbyter begins executing each
instruction of your program in sequence, updating the Master display
after each instruction, until it encounters either an RTS instruction or
a breakpoint (breakpoints are discussed below). When Bugbyter
encounters an RTS instruction, it returns you to Single-Step mode and
lets you observe the results of the subroutine and continue debugging as
you wish.

Setting Transparent Breakpoints

Another way to control Bugbyter's trace of your program is to set
breakpoints at specified locations within your program.

Controlling the Execution of Your Program Page 157

When you are debugging in Trace or Single-Step mode, Bugbyter monitors
your Apple II's program counter (PC) before executing each instruction,
and compares it to any breakpoints that you may have set in the
Breakpoint subdisplay. If your program reaches one of these breakpoints
(that is, if the 65@2's program counter matches the address of a
breakpoint), Bugbyter interrupts your program and returns you to
Bugbyter's Command Level.

A transparent breakpoint does not alter your program's code in any
way. Real breakpoints (used in Execution mode) alter your program
temporarily.

If you didn't set any breakpoints, or if Bugbyter doesn't encounter any
while executing your program, Bugbyter continues executing your program
until you press the ESC key, or Bugbyter reaches the end of your
program.

To set transparent breakpoints, you should be familiar with the
Breakpoint subdisplay area of Bugbyter's Master Display:

P POINT COUNT TRIG BROKE
poop 0pe0 PPOP PPOO
Ppop PoOP 0PPD POOY
ppeo pOOP 0OPD PPOY
0000 0000 00D 0POP

W N~

The Breakpoint subdisplay (in the lower right section of Bugbyter's
Master Display) comprises several fields. You can use the SET command
(described earlier) to increase or decrease the number of breakpoints
displayed. The Breakpoint subdisplay has four column headings; each
line under these four headings represent one breakpoint.

- POINT is the hexadecimal address of the breakpoint.

- COUNT is the number of times Bugbyter has encountered this
breakpoint address while executing your program, since Bugbyter
last TRIGgered, or interrupted program execution, at this
breakpoint.

- TRIG is a count that you can specify. Bugbyter does not
interrupt program execution until it has encountered this
particular breakpoint the number of times that you specify. A
TRIG count of 1 causes Bugbyter to interrupt program execution
the first time it encounters this breakpoint.

- BROKE is the number of times Bugbyter has actually TRIGgered at
this particular breakpoint.

Page 158 Chapter 4: The Bugbyter Debugger

To enter a breakpoint address from the Bugbyter Command Level, type BP
followed by a breakpoint number. For example, to set a breakpoint to be
displayed in row number 1 of the Breakpoint subdisplay, type

BP1
and press RETURN.

When you type this breakpoint set-up command, Bugbyter moves the cursor
to the first zero in the POINT field of the breakpoint row you specify.
Enter a hexadecimal address in this field to represent the address of
breakpoint #1. Use the RIGHT ARROW key to move the cursor to the TRIG
field on that same breakpoint line. In this TRIG field, type a
hexadecimal number greater than zero. If you want Bugbyter to stop on
the first occurrence of this breakpoint, type 1 in this field. (If you
leave TRIG set to @, Bugbyter ignores this breakpoint.) Press RETURN
when you have finished setting the breakpoint address and the TRIG
count.

Where to set breakpoints? You might set breakpoints at critical
locations in your program, such as just after a call to an important
subroutine. When you trace the program, you can verify that the results
from this subroutine are correct and are stored in the proper registers
or memory locations. Other locations might be right after an important
compare instruction, or anywhere you want to check the status of your
program.

Using Breakpoints

Having set breakpoints where you want them, you can use Trace or
Single-Step mode to monitor the execution of your program. Every time
Bugbyter encounters an instruction located at a breakpoint address
(POINT), Bugbyter increments the COUNT for that breakpoint and compares
this COUNT to the TRIG value you set for that breakpoint. When the
COUNT equals your TRIG value, Bugbyter stops your program execution
before executing the instruction at the POINT address. Bugbyter then
highlights the row in the Breakpoint subdisplay that corresponds to the
breakpoint that TRIGgered, and clears the COUNT. You can then observe
all of the 6502 registers, stack, and other conditions that existed just
before your program was interrupted by the breakpoint.

To continue executing the program from the point where the breakpoint

occurred, type either T (to reenter Trace Mode) or S (to enter
Single-Step mode), and press RETURN.

Clearing Transparent Breakpoints

To clear a particular breakpoint, type CLR followed by the breakpoint
number, and press RETURN.

Controlling the Execution of Your Program Page 159

To clear all breakpoints, type CLR and press RETURN.

Adjusting the Trace Rate

During tracing, Bugbyter interprets each 6502 instruction in your
program. In other words, the Apple's 65@2 microprocessor executes the
Bugbyter program, which in turn executes your program code. As a
result, the code you are tracing executes much slower than if it were
executed directly by the 65@2. There are three ways to adjust the rate
at which Bugbyter traces your code.

- Before entering Trace mode, set a value in Bugbyter's Trace
Rate register, displayed in the Register subdisplay. Type R=
followed by a hexadecimal value from @ to FF (§ is the fastest
rate and FF the slowest). Press RETURN. When you enter Trace
mode, Bugbyter uses this rate setting to control the speed of
its trace.

- Before entering Trace mode, type OFF from the Bugbyter Command
Level and press RETURN, This clears Bugbyter's Master Display,
greatly increasing the speed of the trace.

- If you have game paddles for your Apple II, you can use them to
adjust the trace rate while you are in Trace mode. Type P and
use Paddle ® to adjust the trace rate. To disable the paddle
and return to the keyboard (R register) rate, type K.

To restore the Master Display from Bugbyter's Command Level, type ON and
press RETURN. To restore the Master Display from Bugbyter's Trace mode,
press ESC, type ON, and press RETURN.

Using Display Options in Trace and Single-Step Modes

You can select one of seven display options for Bugbyter to use in Trace
and Single-Step modes to display different types of relevant
information. The option you select is displayed at the right edge of
the Bugbyter Code Disassembly subdisplay, just to the right of the
instruction to which these options refer.

You must select these options from the Bugbyter Command Level before you
enter Trace or Single-Step mode. You can select only one option at a
time. Bugbyter displays only the most recently selected option.

The following table shows the display options that you can select
and the commands that select them.

Page 160 Chapter 4: The Bugbyter Debugger

Table 4-2. Display Options in Trace
and Single-Step Modes

Display Option Command
(followed by RETURN)

To show the A-register in binary: 0=A
To show the X-register in binary: 0=X
To show the Y-register in binary: 0o=Y
To show the Stack Pointer in binary: 0=S

To show the Processor Status Byte in
binary: 0=P

To display the machine-instruction
bytes in hex: 0=B

To show computed effective addresses,
relative branches, and instruction cycles: 0=

The last option shown in this table, the O=E display option, requires
some extra discussion. There are four 65f2 addressing modes for which
the 65¢2 internally computes an effective address. They are:

mode example

indexed LDA $390,X
indirect JMP ($309)
indexed indirect LDA ($16,X)
indirect indexed LDA ($10),Y

In Trace or Single-Step mode, Bugbyter computes the actual or effective
address for each instruction, using the current contents of registers or
memory cells at the time the instruction is executed. If you selected
the O=E option, Bugbyter displays these effective addresses in the
Disassembly subdisplay. Bugbyter also displays all relative branch
offsets (the hex byte operand of a branch opcode) when you select this
option,

When you select the O=E option, Bugbyter also displays the number of
instruction cycles used by each instruction. This count of the number
of cycles appears in parentheses to the right of the Disassembly line
for each instruction that is executed. For example:

Controlling the Execution of Your Program Page 161

c=p clears the Cycle Count register in the Register subdisplay.
O0=E sets the display option to E.
A=12 sets the accumulator to $12.

FCA8S activates Single-Step mode at the start of the Monitor WAIT
routine.

R starts Bugbyter tracing until it encounters an RTS
instruction.

Bugbyter begins tracing the Monitor WAIT routine, with the command line
at the bottom of the Master Display showing

TRACE AWAITING RTS

The rest of the Master Display changes rapidly. You can watch the Cycle
Count register, in the upper left corner of the Master Display,
incrementing after each instruction is executed. After a few seconds,
the Master Display halts and shows the following:

c R B PC A X Y S P NV-BDIZC
P41E 99 O FCB3 00 P9 ¢@ FF 33 9p119pP11

FC (2)
(4)

1F9: 7C FCAC: BNE S$FCAA E
1FA: 7C FCAE: PLA E

1FB: Al FCAF: SBC #3501 E (2)
1FC: D2 FCBl: BNE SFCA9 E: F6 (3)
1FD: E3 FCA9: PHA E: (3)
IFE: D6 FCAA: SBC #$01 E: (2)
1FF: 91 FCAC: BNE $FCAA E: FC (2)
1¢0@¢: FF FCAE: PLA E: (4)
1f#1: FF FCAF: SBC #3091 E: (2)
192: 09 FCBl: BNE $FCA9 E: F6 (2)
193: 09 FCB3: RTS

194: FF FCB4: INC $42

195: FF FCB6: BNE $FCBA

¢PPP:4C L BP POINT COUNT TRIG BROKE
po@d:4C L 1 000D 0O0P 00p0 0POP
gpg@:4C L 2 000D 000D D000 OPPD
PO@B:4C L 3 0000 0000 0000 0POP
pPpR:4C L 4 PO0D POOD 000D P90

SINGLE STEP

Page 162 Chapter 4: The Bugbyter Debugger

The Cycle Count register in the upper left corner shows $41E (decimal
1¢54) CPU cycles, representing the time required to execute the WAIT
routine when the accumulator is preset to $12. Using a cycle time of
one microsecond, this cycle count represents a WAIT of approximately one
millisecond (@.PPl seconds).

Bugbyter increments the Cycle Count register only when you select the
0=FE display option before entering Trace or Single-Step mode. The Cycle
Count register is not incremented if you use the OFF command to turn off
the Bugbyter Master Display.

Using Execution Mode
Bughyter's Execution mode lets you execute portions of your program at

the full speed of the 65f2 microprocessor, without having Bugbyter slow
your program's execution by constantly checking for breakpoints.

Real Breakpoints

To debug your program in Execution mode, you must use real breakpoints,
rather than transparent breakpoints, to control your program's
execution.

A real breakpoint is a 65§2 BREAK opcode ($P@) that Bugbyter places at
the breakpoint address in your program code. Although transparent
breakpoints do not change your program code in any way, Bugbyter must
alter your program code when it inserts real breakpoints.

To set Real breakpoints at the addresses shown in the POINT column of
the Breakpoint subdisplay, type

IN

from Bugbyter's Command Level, and press RETURN. This command causes
Bugbyter to insert 652 BRK opcodes (ff) at all of the breakpoint
addresses (any POINT addresses with their associated TRIGs set to
greater than zero). Bugbyter displays I for '"breakpoints IN" under the
B flag in the register subdisplay at the top of the screen.

Once you have inserted real breakpoints in your program code, you can
debug your program while executing it at the full speed of the 6502
microprocessor.

When real breakpoints are in your program, Bugbyter does not allow you
to add, change, or clear any breakpoints. To modify any of the
breakpoint information, you must first instruct Bugbyter to take real

Controlling the Execution of Your Program Page 163

breakpoints out. Type
ouT

from the Bugbyter Command Level and press RETURN. This command forces
Bugbyter to remove the break opcodes that it inserted when you last
used the IN command, restoring the 6502 instruction opcodes originally
stored there. The B flag that monitors the status of real breakpoints
in the Register subdisplay at the top of the screen displays the
letter 0, for "breakpoints OUT."

WARNING

Once you have set real breakpoints in your program, Bugbyter
has altered your program by inserting break opcodes at every
breakpoint address. If you exit Bugbyter before you remove
the real breakpoints, your code may be riddled with unwanted
6502 breaks. Be sure to type

OuT

and press RETURN to return your code to its original
condition.

If you enter Trace mode when real breakpoints are IN, Bugbyter operates
just as it does when real breakpoints are OUT. It is more convenient to
use transparent breakpoints if you wish to debug your program in Trace
or Single-Step mode. Real breakpoints are necessary only when you are
debugging your program in Execution mode.

Debugging Your Program in Execution Mode

To execute your program directly from the Bugbyter Command Level, type a
starting address followed by G, and press RETURN (or simply type G and
press RETURN).

When you type this command, Bugbyter enters Execution mode and starts
executing your program from the specified starting address. If you
didn't type a starting address, Bugbyter uses the last starting address
that you specified with either the Single-Step, Trace, or Go command.
For example, to execute your program starting at location $1@9@, type

19906

and press RETURN. Bugbyter treats this command in much the same way it
treats the Apple Monitor G command: Bugbyter pushes a return address
onto the stack before executing your program code. If your program
encounters an RTS (return from subroutine) instruction, you will be

Page 164 Chapter 4: The Bugbyter Debugger

returned to the Bugbyter Command Level. The same result occurs if your
program encounters a BRK opcode or a breakpoint.

To continue executing your program after a breakpoint has forced
Bugbyter out of Execution mode, type J and press RETURN. This command
does not push a return address on the stack, if you have already set up
Execution mode by using the G command. When first executing your code,

type
{starting—-address>G

and press RETURN. After encountering any break opcodes, type J and
press RETURN to continue direct, real-time execution.

By the Way: Because the J command does not push a return
address on the stack, you should always begin Execution mode
debugging by using the G command. If you start Execution
mode with the J command and your program encounters an RTS
instruction, the 6582 uses an undefined address from the
stack, with unpredictable results.

When the 65P2 encounters a BRK opcode (either a breakpoint inserted by
Bugbyter or part of your program code itself), the 65p2 passes control
back to the Bugbyter program. If the BRK opcode is a breakpoint
inserted by Bugbyter, Bugbyter highlights that breakpoint (using inverse
video in the Breakpoint subdisplay), and returns you to the Bugbyter
Command Level. If the BRK opcode is not a breakpoint inserted by
Bugbyter, Bugbyter passes control to the Apple Monitor.

Debugging Real-Time Code

If you are debugging a program that countains real-time sensitive code or
calls real-time Apple II routines, these portions of your program will
not function correctly if you merely simulate their execution in
Bugbyter Simulation mode. There are two ways to use Bugbyter to debug
this kind of program. One way was described in the section on using
real breakpoints in Execution mode. The other way is to use the more
powerful debugging capabilities of Bugbyter Simulation mode to debug the
insensitive portions of your program, while still executing the
real-time routines of your program at the full speed of the 6582
microprocessor.

Examples of real-time sensitive code are the core routines associated
with the ProDOS disk operating system. The read data, write data, read
address, and track seek routines are very sensitive to cycle speed
variation. These core routines will not function at all if you trace

Controlling the Execution of Your Program Page 165

them with Bugbyter's Simulation mode. To execute these subroutines from
the program that you are tracing, you must indicate to Bugbyter that
these are real-time portions of code.

Bugbyter allows you to execute subroutines in Execution mode, while
tracing your calling routines in Simulation mode. To set up this
method, designate a region of memory containing the real-time routines
that the Bugbyter will always execute in Execution mode. Do this by
setting two soft-switch locations within the Bugbyter program code.

Soft switches are memory locations at the start of the Bugbyter program
code that you can set or clear to control features of the Bugbyter.
Offset from the beginning of the Bugbyter program, at locations
start+$PA and start+$@B, are the two bytes that you can set to define
the starting address of this real-time region. At locations start+$@C
and start+$@D are two bytes that indicate the ending address of this
region.

When you are tracing your program in Simulation mode, any subroutine
calls (JSRs) to locations inside this specified region will cause
Bugbyter to transfer control of your program from Simulation mode to
Execution mode. This means that the subroutines in this region will
execute at the full speed of the 6502. When the 6502 encounters the
return from subroutine (RTS) instruction that transfers control back to
your calling routine, Bugbyter reactivates Simulation mode and
continues tracing or single-stepping your main or calling program. For
example, if you have Bugbyter loaded at $200p, typing

20PA: @ D@ FF FF

and pressing RETURN specifies a real-time region extending from location
$DPPP to S$FFFF. 1If you then typed

3P@:LDX #P

392:LDA 1198,X
3¢5:JSR FDF9 (the address of the Monitor character—out routine)

3P8:INX

3¢9:CPX #CP

3PB:BNE 309
and

39C:BRK

you would set up a calling program to output the characters at
$110@~11BF. Then type

OFF (turns the Master Display off)

and

390T (traces your calling program)

Page 166 Chapter 4: The Bugbyter Debugger

Bugbyter begins tracing this character output routine until it
encounters a JSR to the Monitor ROM routine (called COUTl) at $FDF@—-
inside our real-time region ($DPPP-FFFF). At that time, Bugbyter enters
Execution mode and allows COUTl to execute directly uunder the 6502.

When the COUTl routine exits back to the routine, Bugbyter reenters
Simulation mode and the code that followed the call (JSR) to COUTL then
continues tracing under Simulation mode.

Debugging Programs That Use the Keyboard and Display

Bugbyter uses the display screen to send information to you, and many of
Bugbyter's features require that you use the keyboard to enter debugging
commands.

This section deals with potential contention, between your program and

Bugbyter, for these resources. This contention between Bugbyter and
your own program must be eliminated.

Eliminating Contention for the Screen

Because Bugbyter displays all information on the screen, using absolute
screen addressing, any programmed output by your program that uses
Apple's I/0 hooks (CSW) will not be impeded. However, as Bugbyter uses
the screen to constantly update the Master Display when you are in Trace
or Single-Step mode, you are not likely to see any of your program's
output.

To eliminate contention between Bugbyter and your program for the use of
the screen, just type (from Bugbyter's Command Level):

OFF

and press RETURN. Bugbyter clears the first 23 lines of the text page,
leaving the command prompt appearing on the bottom line. When you enter
Trace or Single-Step mode, Bugbyter will allow your program to write
anything it desires to this text page.

To recall the Master Display from the Bugbyter Command Level, simply
type

ON

and press RETURN in response to the Bugbyter command prompt. If you are
currently in Trace or Single-Step mode, first press ESC, to exit to the
Bugbyter Command Level.

Controlling the Execution of Your Program Page 167

Eliminating Contention for the Keyboard

When your program requires input from the keyboard, you should make sure
that Bugbyter does not interfere with your program's polling of the
keyboard. Normally in Trace or Single-Step mode, Bugbyter samples
(polls) the keyboard to respond. when you type one of the
single~keystroke commands described previously. If you are tracing or
single-stepping a program that expects input from the keyboard, your
program will never receive any characters unless you turn off Bugbyter's
keyboard polling.

When you turn off Bugbyter's keyboard polling, Bugbyter ignores all
characters typed at the keyboard, except one special interrupt character
that you specify. Bugbyter scans the keyboard address ($CP@Q) during
Trace or Single-Step mode, but does not clear the keyboard ready flag
unless the character you typed is this special interrupt character. For
any other characters, Bugbyter leaves these addresses intact and permits
your program to accept the keystroke from the keyboard input register.

To turn off Bugbyter's keyboard polling, set Bugbyter's keyboard-polling
soft switch.

The Keyboard-Polling soft switch is located at memory location $7CP6 (or
the relative memory location 'start + 6" if you have relocated Bugbyter
to a different location). If you relocate Bugbyter to a different
address, the keyboard-polling soft switch will be located at the sixth
location following the start of the Bugbyter. The byte stored at this
location consists of

- A one-bit keyboard-polling flag (the most significant bit)
- A seven-bit ASCII value that defines the special interrupt key.

When you first start Bugbyter, this most significant bit is @. If you
set this keyboard-polling flag to 1, Bugbyter turns off its keyboard
polling when in Trace or Single-Step mode. With keyboard

polling turned off, Bugbyter continues to scan for the special interrupt
keystroke that you specified. For example, typing

7CP6:81

from the Bugbyter Command Level and pressing RETURN turns off Bugbyter's
keyboard polling in Trace mode and instructs Bugbyter to scan for &
CONTROL-A ($#1) character. The program you are debugging can then
accept any keystroke from the keyboard, except the CONTROL-A character.
When you type CONTROL-A in Trace mode, Bugbyter will exit from Trace
mode and return you to the Bugbyter Command Level.

Page 168 Chapter 4: The Bugbyter Debugger

Using Paddle Button @ to Control Trace Mode

Rather than having Bugbyter scan the keyboard during Trace mode, you can
communicate with Bugbyter in Trace mode by using Paddle Button . This
technique frees the keyboard so that your program can accept any
keyboard character as input.

By the Way: The OPEN APPLE key on the Apple IIe's keyboard
functions exactly like Paddle Button @#. If you have an
Apple IIe, you can use Paddle Button § and the OPEN APPLE
key interchangeably.

To use Paddle Button @ to suspend Bugbyter's Trace mode, you must
activate this feature before you enter Trace mode. Pressing Paddle
Button @ does not cause Bugbyter to exit Trace mode, as does pressing
ESC or the "interrupt" key when Bugbyter's keyboard polling has been
turned off. Instead, when this feature is activated and you are in
Trace mode, Paddle Button @ suspends Bugbyter's trace of your program.
Bugbyter continues tracing as soon as Paddle Button @ is released.

To set up this feature, set Bugbyter's Paddle-Button—f soft switch to
$8p (normally, this soft switch is cleared or $@@}). This soft switch is

located at memory address 20@4 (or "start + 4" if you have relocated
Bugbyter to a different memory location). To set this soft switch, type

2p94 : 89

and press RETURN.

Note: If you set the Paddle-Button~p soft switch to $8p and
you have not connected game paddle P to your Apple II's Game
1/0 port, your Apple will be "frozen" if you enter
Bugbyter's Trace mode. This is because your Apple II sees a
disconnected game paddle as a game paddle with the paddle
button continuously depressed.

This will not happen if you are using an Apple ITe, however,
because the OPEN APPLE key is a permanently connected
"Paddle Button §."

Controlling the Execution of Your Program Page 169

Using Paddle @

To use Paddle @ to control Bugbyter's trace rate when you are in Trace
mode, type a P in Trace mode. To deactivate this feature and cause
Bugbyter to resume using the keyboard trace rate (shown under the R
label in the Register subdisplay), type K while you are in Trace mode.

If you are debugging a program that itself uses Paddle @, you may want
to disable this feature of Bugbyter, causing Bugbyter to ignore a P
keystroke when you are in Trace mode. To disable Bugbyter's use of
Paddle @, you must clear Bugbyter's Paddle-f soft switch, located at
memory address 2096 (or '"start + 6" if you have relocated Bugbyter). To
clear this soft switch, type

2006:9

and press RETURN.,

By the Way: To have positive control over Bugbyter's use of
all three of your Apple II's input devices, you can set or
clear the Paddle—-Button-f, Paddle-@, and the
Keyboard-Polling soft switches all at once. To disable
Bugbyter's use of the game paddles and to activate
Bugbyter's keyboard polling, clear all three of these
soft-switches at once by typing

2004:0 0 9

and pressing RETURN.

Executing Undefined Op—Codes

When you are debugging your program in Trace or Single-Step mode,
Bugbyter ignores any illegal or undefined 65@2 instruction opcodes.
You can disable this restriction by using a Bugbyter soft switch.

To allow Bugbyter to execute undefined 6502 opcodes, you must set the
byte at relative location start+3 (absolute location 320903 if the
Bugbyter was loaded at address $2PPP) to $8f. (This byte is set to $P0
when Bugbyter is first loaded.) To prevent Bugbyter from executing
illegal 65¢2 instruction opcodes, you must use Bugbyter's normal memory
assignment commands to reset this location to $@0.

Because Bugbyter does not know the length of an undefined opcode's
operand, Bugbyter assumes no operand and increments the 6502 PC by one.
You must use the RIGHT ARROW key in Single-Step mode to skip past any

Page 170 Chapter 4: The Bugbyter Debugger

operands to the next instruction. Using the complete register and
memory display capabilities of Bugbyter, you can easily explore all of
the undefined operations of the 65@2 (try executing AF 58 FF, for
example).

173
174
175
176

Chapter 5

The Relocating Loader

About This Chapter
Overview

Restrictions
Using the Relocating Loader

Page 171

Page 172

Page 173

Chapter 5

The Relocating Loader

About This Chapter

The Relocating Loader routines in the ProDOS Assembler Tools allow you
to run assembly~language subroutines from within BASIC programs. Read
this chapter if you intend to use assembly-language programs as part of
an Applesoft BASIC program.

There are two ways to run an assembly-language subroutine from a BASIC
program:

- Use the ProDOS BLOAD command to load your binary object file
into memory. Then call your routine, using the fixed starting
address at which your program was assembled. (For details on
the BLOAD command, see BASIC Programming With ProDO0S.)

- Use the Relocating Loader routines to load your relocatable
object program just below the HIMEM address. This method is
preferable, because it allows BASIC programs to run efficiently
on Apple II systems with varying amounts of memory.

The first part of this chapter explains what the Relocating Loader
routines are and what they do.

The second part of this chapter explains how you can use these routines
from within a BASIC program.

Page 174 Chapter 5: The Relocating Loader

Overview

The Relocating Loader consists of two routines: RBOOT and RLOAD.
Together, these routines allow your BASIC programs to load relocatable
assembly—language subroutines into high memory, without regard to the
amount of memory in a particular Apple II system. After your BASIC
program has loaded your assembly-language subroutines, your BASIC
program can call these subroutines at any time.

By the Way: The Relocating Loader routines load only
relocatable assembly~language modules (REL files) that you
generate using the Assembler's REL directive. The REL
assembly directive is explained in Chapter 3.

To use the Relocating Loader, your BASIC program must first BRUN the
RBOOT routine from BASIC. The RBOOT routine loads and sets up the RLOAD
routine, which relocates the assembly-language modules. Once you have
called the RBOOT routine, your BASIC program can call the RLOAD routine
to load your individual relocatable subroutines into memory. After
loading each relocatable subroutine into memory, the RLOAD routine
returns an address at which your BASIC program can later call the actual
assembly-language subroutine to perform its particular function.

When you invoke the RLOAD routine to load your assembly-language
modules, RLOAD loads the designated module just below the HIMEM address
of your Apple II system. RLOAD then reduces HIMEM in increments of 256
bytes, using the BASIC routine GETBUFR (described in PRODOS Technical
Note #9), protecting the relocatable module from being overwritten by
BASIC. You can load as many relocatable modules in this fashion as you
like, but each call to RLOAD will allocate a minimum of 256 bytes per
module.

The Relocating Loader routines do not constitute a linking loader.
Although you can use these routines to load as many assembly-language
modules as you like, the Relocating Loader does not resolve inter-module
references or external symbols that you may have defined using the
Assembler's EXTRN or ENTRY pseudo-op directives. Typically, if you use
more than one assembly-language module in your BASIC program, you will
have to call each module separately from Applesoft.

Overview Page 175

Restrictions

Although you can use the Relocating Loader routines with almost any
BASIC program, there are restrictions on how and when you can use these
routines:

- Before calling the Relocating Loader, your program should not
allocate or use any string variables. The RLOAD routine does
not save any string data that your program may have allocated
before RLOAD loads relocatable modules into memory. (Numeric
variables can be used before your program calls the Relocating
Loader.)

- After calling RBOOT, your program must not DIMENSION or
allocate any new numeric or string variables until after the
last use of RLOAD to pull in your relocatable modules. Any
variables that you use during this process must have been
allocated before your program called RBOOT. This restriction
is necessary because the RBOOT and RLOAD routines occupy memory
just above Applesoft's variable tables. After you have used
RLOAD for the last time, you are free to allocate new BASIC
variables that will overwrite the RLOAD routine and reuse this
memory space.

— RLOAD calls GETBUFR to allocate space for the REL modules, but
it does not set the bits in the PRODOS memory map to protect
the module's memory space. Each individual module must set the
PRODOS memory map bits according to its own requirements.

In addition, RLOAD frees the memory map bits and the memory space and
returns it to ProDOS for other uses. Each program using RLOAD must
clear the memory map bits and call the BASIC FREEBUFR routine at $BEFS8
(CALL 48888 from BASIC) before terminating.

Page 176 Chapter 5: The Relocating Loader

Using the Relocating Loader

To invoke the Relocating Loader from a BASIC program, your program must
first load and execute the RBOOT routine from Applesoft BASIC.

The following example shows the syntax of the BASIC statements that
invoke the Relocating Loader routines and load a relocatable module
called MYMODULE from disk:

1p ADRS = @ : REM PRE-ALLOCATE ADRS VARIABLE
2¢ PRINT CHR$(4);'"BRUN RBOOT" : REM LOAD AND EXECUTE RBOOT
30 ADRS=USR(®),''MYMODULE" : REM LOAD A RELOCATABLE MODULE

The RBOOT routine is a small subroutine that occupies memory from $218
through $3CF.

Note that you cannot use the usual D$ for the ProDOS BLOAD command;
instead use a CHR($4), because you cannot allocate string variables
before using the RBOOT and RLOAD routines.

When you call RBOOT to load the RLOAD routine into memory, RBOOT loads
the RLOAD routine above the end of Applesoft's variable tables. RBOOT
accepts no parameters, but assumes that the RLOAD function is on the
disk that was last accessed, which typically would be the disk from
which RBOOT itself was just BLOADed. The RBOOT routine then sets up the
USR($) function with the starting address of RLOAD.

RBOOT always looks for the name RLOAD. RBOOT uses the current prefix if
it is set, otherwise RBOOT looks in the root directory of the last
accessed disk device to locate RLOAD. The last accessed disk device
will be the disk containing RBOOT. Refer to the ProDOS User's Manual
for the exact description of the BRUN command and its behavior in
locating RBOOT.

Your BASIC program can then invoke the RLOAD routine by calling the
USR(P) function to load relocatable modules.

The RLOAD function takes one parameter from the statement containing the
USR(®) function: The ProDOS pathname of the module to be loaded. The
pathname must be the name of a REL type file, not a BINARY type file.

If the pathname is omitted, the error message FILE NOT FOUND is
displayed.

The RLOAD routine either returns the load address of the relocatable
module that you have loaded, or returns an error if it encounters a
problem while attempting to load your module. You can catch this error
by using Applesoft's ON ERR facility. If you do not use the ON ERR
statement before using RBOOT and RLOAD, and RLOAD encounters an error

Using the Relocating Loader Page 177

while trying to load your module, your program will not function
correctly.

The value returned by the USR function is a signed REAL result that your
program can later use to CALL the loaded module. (This assumes that
your relocatable module begins with an executable code segment.,)

An effective means of providing multiple entry points to your
relocatable module is to put a table of jump instructions at the start
of the module. This allows your BASIC program to execute CALLs to the
returned ADRS, ADRS+3, ADRS+6, ADRS+9, and so forth, as a means of
entering the various subfunctions in your module. This technique also
allows the contents of your relocatable module to grow or shrink later
without disturbing your BASIC program's interface to the
assembly-language module., You can later add additional jumps to the
table for new functions, while leaving undisturbed the existing
interface to your original entry points.

You can load as many modules as you wish, up to the available memory
space minus the size of RLOAD itself. RLOAD is about 1.5K and is always
loaded on a page boundary by RBOOT. RLOAD requires at least one free
file buffer available that it can borrow from ProD0OS. If it does not
find one, the error message NO BUFFERS AVAILABLE appears.

By the Way: Because RLOAD reduces the address of HIMEM when
it loads a module, your program must restore HIMEM and the
ProDOS memory map by calling FREEBUFR as described earlier
in this section. The Relocating Loader does not
automatically restore HIMEM to its original setting.

When you test a program that uses the Relocating Loader,
repeated use of RLOAD without restoring HIMEM causes RLOAD
to allocate new space each time it loads a module. This can
quickly consume all of memory if you do not restore HIMEM to
its normal value before each test.

Page 178

Page 179

Appendixes

Contents

Page 180

Appendixes

Contents

183 Appendix A: Quick Reference Guide to the Editor

183 Editor Commands Arranged by Function
183 Accessing Disk Volumes and Directories
184 Storing and Retrieving Text Files

184 Manipulating Lines in the Text Buffer
185 Viewing Text in the Text Buffer

185 Changing Text Within a Line

185 Editing Two Files at Once

186 Altering the Display

186 Leaving the Editor

187 Loading and Saving Non-Text Files

187 Managing Disk Directories

188 Printing Files

188 Automatic Command Execution

188 Invoking the Assembler

189 FEditor Commands Arranged Alphabetically
194 Edit Mode Keystroke Summary

195 Appendix B: Quick Guide to 6502 Assembly Language

195 Summary of Addressing Modes

197 Summary of Assembler Directives
199 Summary of 6502 Mnemonics

201 Additional 65CP2 Mnemonics

2¢3 Appendix C: Quick Reference Guide to Bugbyter

203 Bugbyter Command Level

204 General Commands

285 Register Reference Commands
295 Execution Commands

206 Breakpoints

207 Memory Reference

207 Disassembly Options for Trace and Single-Step Modes

Appendixes:

209
219

211

211
211
215
217
217
219

227
227
231

231
231

235

237

237
239

Contents Page

Trace and Single-Step Modes
User Soft Switches

Appendix D: Error Messages

Editor Messages
ProDOS Errors
Editor Command Errors
Assembler Messages
ProDOS Errors
Syntax Errors

Appendix E: Object File and Symbol Table Formats

Object File Format

Symbol Table Formats
Symbolicname
Flagbyte

Appendix F: Editing BASIC Programs

Appendix G: System Memory Use

The Editor/Assembler
The Bugbyter Debugger

181

Page 182

Appendix A

Page 183

Quick Reference Guide to the Editor

Editor Commands Arranged by Function

Accessing Disk Volumes and Directories

CAT [pathname]

CATALOG [pathname]

Online

PreFiX [pathname]

PreFiX /

Display the 4@-column ProDOS
catalog, using the current
prefix or the optional pathname.

Display the 8@-column ProDOS
catalog, using the current
prefix or the optional pathname.

Display a list of the volume
names of all mounted disks.

Set the ProDOS prefix to the
optional pathname. If the
pathname is omitted, display
the current prefix.

If used alone, display the
current prefix., If followed
by a new prefix, change the
prefix.

Page 184 Appendix A: Quick Reference Guide to the Editor

Storing and Retrieving Text Files

LOaD pathname Load the file specified by
pathname into the text buffer,
destroying anything already in
the buffer.

APPEND [line#] pathname Replace [line#] and lines
following it with specified file.
SaVE [begin# [-end#]] Save the lines in the
[pathname] specified range to the file

specified by pathname.

FILE Display the pathname of the file
currently loaded, and the bytes
used and bytes remaining in the
buffer.

Manipulating Lines in the Text Buffer

Add [line#] Add lines, starting with line#,
to text buffer. Enter Input
mode to add the new lines.

Insert line# Insert lines from the keyboard
before line#. Enter Input mode to
insert the new lines.

COpy line#l [-1line#2] TO line#3 Insert line#l [through line#2]
before line#3.

Delete begin# [-end#] Delete the specified range of
lines from the buffer.

Replace begin# [-end#] Delete the specified line or
range of lines and enter Input
mode, to add new lines to the
text buffer in place of the
deleted lines.

NEW Delete (via pointer clearing)
the entire contents of the text
buffer.,

Editor Commands Arranged by Function Page

Viewing the Text in the Text Buffer

List [begin# [-end#]] Display, with line numbers, the
lines in the specified range.
Control characters displayed in
inverse video.

CONTROL-R Repeat the most recent List
command.
Print [begin# [-end#]] Display, without line numbers,

the lines within the specified
range. Control characters are
displayed as countrol characters.

Changing Text Within a Line

Find [begin# [-end#]] Display all lines, within
[.string.] the specified range, that contain
the string.

Change [begin# [-end#]] Change all or some of the
.0ldstr.newstring. occurrences of a string to a new
string within the specified
range.
Edit [begin# [-end#]] Eater Edit mode for all
[.string.] lines that contain the specified
string.
SET Delimchar Change the Editor command

delimiter character to the
specified new delimiter
character. (Permits you to use
the colon in a search string.)

Editing Two Files at Once

SWAP Swap the currently active text
buffer, saving the contents of
the current one for later
editing.

KILL2 Delete the entire contents of
text buffer 2 and return to
single-buffer mode with text
buffer 1.

185

Page 186 Appendix A: Quick Reference Guide to the Editor

Altering the Display

COLumn 4§ Set the Editor display routines to
4@-column display mode.

COLumn 80 Set the Editor display routines to
8f-column display mode if your
Apple II can support this.

CONTROL-E Enable lowercase character
entry (Apple 1I or Apple II Plus
systems that cannot otherwise
receive lowercase characters).

CONTROL-W Disable lowercase character
entry that was enabled by
CONTROL-E.

SET Lcase Enable lowercase character entry

(for Apple II or II Plus systems that
do not contain an ALS Smarterm Card,
but can receive and display

lowercase characters).

SET Ucase Disable lowercase character entry
that was enabled by the SET Lcase
command.

Tabs [Tablist] [.tabchar.] Set the Editor display tab

stops to the Tablist, and set
the tab character to tabchar.

TRuncON Turn on truncation of comment
display.

TRuncOFf Turn off comment display
truncation.

Leaving the Editor

END End the Editor session and
returns control to the BASIC
interpreter without ProDOS.

EXIT [pathname] Exit from the Editor to
BAS.SYSTEM or to the optional
pathname.

MON Enter the Apple II Monitor.

(Press CONTROL-Y to return to
the Editor.)

Editor Commands Arranged by Function Page

Where line# Display the hexadecimal address
of text for the specified line#
(the address useful when you're
using Monitor commands).

Loading and Saving Non-Text Files

BLOAD pathname,A[$]address Load the specified binary file
into the edit buffer at the
specified address. Anything
already in the buffer may be

destroyed.
BSAVE pathname,A[$]address, Save a binary image of the
L[$]length specified number of bytes,

starting at the specified
address, into a binary file with
the specified pathname.

XLOAD pathname[,A[$]address] Load a sequential file into the
edit buffer, reconstructing its
ProDOS filetype, access, and
auxtype. Begin loading the
data at the optional address if
given.

XSAVE pathname [,A[$]address Save a sequential file from the
[,L[$]length]] edit buffer and reconstructs its
filetype, access, and auxtype.
Uses the optional address and
length if they are given.

Managing Disk Directories
CREATE pathname Create a subdirectory file

with the specified pathname.
The prefix applies in the normal

manner.

DELETE pathname Delete the file or subdirectory
specified by the prefix and/or
pathname.

RENAME oldpathname,newpathname Change the name of an existing
unlocked file from oldpathname
to newpathname.

LOCK pathname Lock the specified file.

187

Page 188 Appendix A: Quick Reference Guide to the Editor

UNLOCK pathname Unlock the specified locked
file.

Printing Files

PR# slot# [,Devinitstrg] Set the Editor and Assembler
printer device to slot# and
save the DevInitstrg for device

initialization.

PTROFF Disable printer output.

PTRON Enable printer output.

Automatic Command Execution

EXEC pathname Begin reading Editor commands
from the specified sequential
text file.

Invoking the Assembler

PR# slot# [,DevInitstrg] Set the Editor and Assembler

printer device to slot# and saves
the DevInitstrg for device

initialization.
PR# diskslot,[Pnn] Select disk output for the
[Lnn]pathname Assembler listing and writes it

into the specified text file.
The pathname may not be a
partial pathname if it begins
with P or L.

ASM pathname[,objpathname] Invoke the Assembler, to
assemble the source file
(pathname) and create a named
object file (objpathname) or to
suppress the disk object file
(@).

Editor Commands Arranged Alphabetically Page

Editor Commands Arranged Alphabetically

Add [line#]

APPEND [line#] pathname

ASM pathname|[,objpathname]

BLOAD pathname,A[$]address

BSAVE pathname,A[$]address,
L[$]1length

CAT [pathname]

CATALOG [pathname]

COLumn 49

COLumn 89

COopy line#l [~line#2] TO line#3

CREATE pathname

Add lines, starting with line#,
to text buffer. Enter Input
mode to add the new lines.

Replace [line#] and lines
following it with specified file.

Invoke the Assembler, to
assemble the source file
(pathname) and create a named
object file (objpathname) or to
suppress the disk object file
(@.

Load the specified binary file
into the edit buffer at the
specified address. Anything
already in the buffer may be
destroyed.

Save a binary image of the
specified number of bytes,
starting at the specified
address, into a binary file with
the specified pathname.

Display the 4@-column ProDOS
catalog, using the current
prefix or the optional pathname.

Display the 8@-column ProDOS
catalog, using the current
prefix or the optional pathname.

Set the Editor display routines
to 4@-column display mode.

Set the Editor display routines to
8f-column display mode, if your
Apple II can support this.

Insert line#l [through line#2]
before line#3.

Create a subdirectory file

with the specified pathname.

The prefix applies in the normal
manner.

189

Page 190 Appendix A: Quick Reference Guide to the Editor

Change [begin# [-end#]] Change all or some of the
.oldstr.newstring. occurrences of a string to a new
string within the specified
range.

DELETE pathname Delete the file or subdirectory
specified by the prefix and/or
pathname.

Del begin# [-end#] Delete the range of lines from

the buffer.

Edit [begin# [-end#]] Enter Edit mode for all
[.string.] lines that countain the specified
string.
END End the Editor session and

returns control to the BASIC
interpreter without ProDOS.

EXEC pathname Begin reading Editor commands
from the specified sequential
text file.

EXIT [pathname] Exit from the Editor to
BAS.SYSTEM or to the optional
pathname.

FILE Display the pathname of the file
currently loaded, and the bytes
used and bytes remaining in the

buffer.
Find [begin# [-end#]] Display all lines, within the
[.string.] specified range, that contain

the string.

Insert line# Insert lines from the keyboard
before line#. Enter Input mode to
insert the new lines.,

KILL2 Delete the entire contents of
text buffer 2 and return to
single-buffer mode with text
buffer 1.

List [begin# [-end#]] Display, with line numbers, the
lines in the specified range.
Control characters displayed in
inverse video.

LOCK pathname Lock the specified file.

Editor Commands Arranged Alphabetically Page 191

L0aD pathname Load the file specified by
pathname into the text buffer,
destroying anything already in
the buffer.

MON Enter the Apple II Monitor.
(Press CONTROL-Y to return to
the Editor.)

NEW Delete (via pointer clearing)
the entire contents of the text
buffer.

Online Display a 1list of the volume

names of all mounted disks.

PreFiX [pathname] If used alone, display the
current prefix. If followed
by a new prefix, change the

prefix.
PreFiX / Display current ProDOS prefix.
Print [begin# [-endf#]] Display, without line numbers,

the lines within the specified
range. Control characters are
displayed as control characters.

PR# slot# [,DevInitstrg] Set the Editor and Assembler
printer device to slot# and
saves the DevInitstrg for device

initialization.
PR# diskslot,[Pnn] Select disk output for the
[Lnn]pathname Assembler listing and writes it

into the specified text file.
The pathname may not be a
partial pathname if it begins
with P or L.

PTROFF Disable printer output.
PTRON Enable printer output.
RENAME oldpathname,newpathname Change the name of an existing

unlocked file from oldpathname
to newpathname.

Page 192 Appendix A: Quick Reference Guide to the Editor

Replace begin# [-end#] Delete the specified line or
range of lines and enters Input
mode, to add new lines to the
text buffer in place of the
deleted lines.

SaVE [begin# [-end#]] Save the lines in the
[pathname} specified range to the file
specified by pathname.

SET Delimchar Change the Editor command
delimiter character to the
specified new delimiter
character. (Permits you to use
the colon in a search string.)

SET Lcase Enable lowercase character entry
(for Apple 1T or II Plus systems that
do not contain an ALS Smarterm Card,
but can receive and display
lowercase characters).

SET Ucase Disable lowercase character entry
that was enabled by the SET Lcase
command.

SWAP Swap the currently active text

buffer, saving the contents of
the current one for later
editing.

Tabs [Tablist] [.tabchar.] Set the Editor display tab
stops to the Tablist, and set
the tab character to tabchar.

TRuncON Turn on truncation of comment
display.

TRuncOFf Turn off comment display
truncation.

UNLOCK pathname Unlock the specified locked
file.

Where line# Display the hexadecimal address

of text for the specified line#
(the address useful when you're
using Monitor commands).

Editor Commands Arranged Alphabetically

XLOAD pathname[,A[$]address]

XSAVE pathname [,A[$laddress
[,L[$]length]]

Load a sequential file into the
edit buffer, reconstructing its
ProDOS filetype, access, and
auxtype. Begin loading the
data at the optional address if
given.

Save a sequential file from the
edit buffer and reconstruct its
filetype, access, and auxtype.
Use the optional address and
length if they are given.

Page 193

Page 194 Appendix A: Quick Reference Guide to the Editor

Edit Mode Keystroke Summary

Editing Function

Move cursor left one character

Move cursor right one character

Delete current character

Insert character(s) at cursor position

Replace character(s)

Accept next character verbatim
Restore the original line

Find character, move cursor to it

Store line as it appears on the screen

Truncate line at cursor, moving
truncated portion to text buffer

Exit from Edit mode, return to Command Level

Enable lowercase input

(if this was set up before Edit mode was entered)

Disable lowercase input

(if this was set up before Edit mode was entered)

Keystroke
LEFT ARROW
RIGHT ARROW
CONTROL-D
CONTROL-I

any noncontrol
character

CONTROL~V
CONTROL-R

CONTROL-F,
any character

RETURN

CONTROL~-T
CONTROL-X

CONTROL-E

CONTROL-W

Page 195

Appendix B

Quick Guide to 6502 Assembly Language

Note: This is only a summary. For complete details, refer
to one of the 6502 programming manuals listed in the
Preface.

Summary of Addressing Modes

Note that all required syntax may be preceded by an optional identifier
in the label field of a statement.

Page 196

Table B-1.

Appendix B:

Summary of Addressing Modes

Quick Guide to 6502 Assembly Language

Addressing Mode

Required Syntax

Implied (no address) opc
Accumulator opc A
Immediate opc ffexpression
Low 8 bits of address opc #>expression
High 8 bits of address opc fi<expression
Zero page opc zpg-expression
Indexed X opc zpg—expression,X
Indexed Y opc zpg—expression,Y
Absolute opc abs-expression
Indexed X opc abs—expression,X
Indexed Y opc abs-expression,Y
Indexed, Indirect X opc (zpg-expression,X)
Indirect,Indexed Y opc (zpg-expression),Y
Absolute Indirect JMP (abs~expression)
Where
- opc refers to an instruction mnemonic
- abs refers to an absolute address expression
- 2zpg refers to a zero page address expression.
All other characters must be typed as shown.
Note: To invoke a zero page wrap-—around address

calculation, you must use the low-byte numeric operator)

in front of the expression.

Summary of Assembler Directives

Syntax

ASC Dstring or .ASCII Dstring

CHN filenamel,[slot][,[drive][,vol]]]

CHR ?

DATE

DCI Dstring

DDB expr[,expr...]
DEF identifier
DEND

DFB expr(,expr...]
DO expr

DS exprl[,expr]
DSECT

DW exprl[,expr...]
ELSE

ENTRY identifier

identifier EQU expr

EXTRN identifier
FAIL p,Dstring
FIN

IBUFSIZ expr

IDNUM

IFEQ expr IFGE expr

IFNE expr IFLE expr

IFGT expr

IFLT expr

Page 197

Summary of Assembler Directives

Description

ASCII character data

CHaiN to new source file
CHaRacter used for REPeat
DATE character data (9)
Special ASCII character data
Define Double Byte

DEFine absolute identifier
Dsect END

DeFine Byte(s)

DO assembly if expr > @
Define Storage [value]

Dummy SECTion beginning
Define Word(s)

Complement assembly mode
Define ENTRY identifier
EQUate identifier to expr
Refer to EXTeRNal identifier
FAILure error message

FINish conditional assembly
Include BUFfer SIZe set
Generate TIME data (6 bytes)
Do assembly IF expr EQ § etc.

Do assembly IF expr NE @ etc.

Page 198

INCLUDE filenamel,[slot][,[drive][,vol]]]

INTERP

LST [ON , OFF][,[NoJopt[,{NOJopt...]]

MACLIB [slot]}[,[drivel[,vol]]

MSB [ON , OFF]
OBJ expr

ORG expr

PAGE

REF identifier
REL

REP expr

SBTL Dstring
SBUFSIZ expr
SKP expr

STR Dstring

SYS

TIME

ZDEF identifier

ZREF identifier

Appendix B:

or ZXTRN identifier

Quick Guide to 6502 Assembly Language

INCLUDE filename in source

Select INTERPreter object
file

LiSTing control and options
MACro LIBrary disk enable
Most Significant Bit set
OBJect memory address set
ORiGin of assembler adrs
Eject a PAGE on listing
REFerence global identifier
Generate RELocatable output
REPeat CHR expr times
Define SuB TitLe string
Source BUFfer SIZe set

SKiP expr blank lines
Counted ASCII STRing data

Change filetype of next
object file

Generate time word in
output

Zero page global DEFinition

Zero page eXTeRNal REFerence

Summary of 6502 Mnemonics Page 199

Summary of 6502 Mnemonics

Opcode Effect

ADC A+ M+C->A
AND A and M -> A
ASL C < [7..0] <0
BCC Branch on C = @
BCS Branch on C = 1
BEQ Branch on Z = 1
BIT A and M, M7 => N, M6 > V
BGE Branch on C = 1
BLT Branch on C [
BMI Branch on N = 1
BNE Branch on Z 1]
BPL Branch on N = ¢
BRK Force Break

BVC Branch on V = @
BVS Branch on V = 1
CLC #->cC

CLD $ ->D

CLI p->1

CLV B>V

CMP A - M status -> P
CPX X - M status -> P
CPY Y -M status -> P
DEC M-1->M

DEX X-1-=>X

DEY Y~-1-~>Y

EOR A xor M -> A

INC M+1->M

INX X+ 1->X

INY Y+1->%Y%

JMP Jump to New Location
JSR Jump to Subroutine
LDA M->A

LDX M->X

LDY M->Y

LSL C <= [7..0) <- ¢
LSR ->[7...0] -> ¢C
NOP No Operation (PC=PC+l)

ORA Mor A ->A

Page 200 Appendix B: Quick Guide to 6502 Assembly Language
PHA A -> Ms -1 ->85
PHP P => Ms -1 ->8
PLA S+l -> S Ms -> A
PLP S+1 -> S Ms ->P
ROL <~ [7..8]) <= C <~
ROR -—=>C => [7..8] ->-
RTI Return from Interrupt
RTS Return from Subroutine
SBC A-M-C=->A
SEC 1->¢C
SED 1->D
SEI 1->1
STA A->M
STX X->M
STY Y ->M
TAX A->X
TAY A->Y
TSX s§ >X
TXA X ->A
TXS X->8
TYA Y ->A

Note:

A, X, ¥, 8, and P are the 6502 registers
M is a memory location

C is the Carry bit of the P-register

+ indicates binary addition

[7...0] is a bit description of M or A
Ms indicates the memory location pointed

to by the S-register

Additional 65C02 Mnemonics Page 201

Additional 65C$2 Mnemonics

Instruction Mnemonics

Op Code

BRA
DEA
INA
PHX
PHY
PLX
PLY
STZ
STZ
STZ
STZ
TRB
TRB
TSB
TSB
BIT

Description

Branch relative always [Relative]

Decrement accumulator [Accum]

Increment accumulator [Accum]

Push X on stack [Implied]

Push Y on stack [Implied]

Pull X from stack [Implied]

Pull Y from stack [Implied]

Store zero [Absolute]

Store zero [ABS,X]

Store zero [Zero pagel

Store zero [ZPG,X]

Test and reset memory bits with accumulator [Absolute]
Test and reset memory bits with accumulator [Zero page]
Test and set memory bits with accumulator [Absolute]
Test and set memory bits with accumulator [Zero page]
Test Immediate with accumulator [IMMEDIATE]

Instruction Adressing Modes

Op Code

ADC
AND
BIT
BIT
CMP
EOR
JMP
LDA
ORA
SBC
STA

Description

Add memory to accumulator with carry [(ZPG)]
"AND" memory with accumulator {(ZPG)]

Test memory bits with accumulator [ABS,X]

Test memory bits with accumulator [ZPG,X]
Compare memory and accumulator [(ZPG)]
"Exclusive Or" memory with accumulator [(ZPG)]
Jump (New addressing mode) [ABS(IND,X)]

Load accumulator with memory [(ZPG)]

"OR" memory with accumulator [(ZPG)]

Subtract memory from accumulator with borrow [(ZPG)]
Store accumulator in memory [(ZPG)]

Page 202

Key

RETURN

LEFT ARROW
RIGHT ARROW
CONTROL-B
CONTROL-C
CONTROL-D

CONTROL-I

CONTROL~-N

CONTROL-X

Page 203

Appendix C

Quick Reference Guide to Bugbyter

Bugbyter Command Level

Function

Accept user—entered command line.

Move cursor to the left.

Move cursor to the right.

Move cursor to beginning of command line.
Accept next keystroke verbatim.

Delete a character.

Enter insert character mode (any other editor function
exits from this mode).

Move cursor to end of command line.

Delete command line.

Page 204

General Commands

Command

addressL
L

M

SET

ON

OFF
.doscommand
+decimalvalue=
-decimalvalue=

value=
$value=

v

Q

Appendix C: Quick Reference Guide to Bugbyter

Function

Disassemble code beginning at address (addressL)
or continue disassembling (L).

Enter Apple Monitor.
Return to Bugbyter with CONTROL-Y.

Customize master Bugbyter display where:

RIGHT ARROW moves window down.

LEFT ARROW moves window up.

RETURN fixes subdisplay and advances to next
subdisplay.

Turn Bugbyter's Master Display on.

Turn Bugbyter's Master Display off.

Execute ProDOS command.
Press RETURN to return to Bugbyter.

Convert positive decimal to hex.
Convert negative decimal to hex (65536-decimalvalue).

Convert hex to decimal.
Convert hex to decimal.

Display copyright and version number.

Quit Bugbyter (exits through ProDOS vector $3Df).

Bugbyter Command Level Page 205

Register Reference Commands

Command Function
PC=address Set 65@2 Program Counter with hex address.

A=value Set 6502 A-register with hex value.

X=value Set 6502 X-register with hex value.

Y=value Set 6502 Y-register with hex value.

S=value Set 6502 Stack pointer with hex value.

P=value Set 6502 Processor Status register with hex value.
C=value Set Bugbyter Cycle Counter to value.

=value Set Bugbyter keyboard trace rate to value.

Execution Commands

Command Function

addressG Execute code as subroutine at address (addressG) or

G continue (G). An RTS returns to Bugbyter.

addressJ Jump to code at address (addressJ) or continue (J).

J Used with breakpoints.

addressT Enter Trace or Single-Step mode starting at address

T (addressT) or continue (T). See Trace and Single-Step
commands.

addressS Enter Trace or Single~Step mode and execute single opcode

] starting at address (addressS) or continue (S). See

Trace and Single-step commands.

Page 206 Appendix C: Quick Reference Guide to Bugbyter

Breakpoints
Command Function
BPn Set breakpoint n, where:
value sets breakpoint field to value.
LEFT ARROW moves to previous field
RIGHT ARROW or SPACE moves to next field.
ESC or RETURN returns to Bugbyter command line.
POINT is a user—-defined breakpoint address.
COUNT is the number of times the breakpoint address was
encountered.
TRIG is the user—-defined count before breaking. NOTE:
To cause a break, TRIG must be set to one or greater.
BROKE is the number of times Bugbyter triggered.
IN Insert BRK (@) op-codes into addresses specified in
breakpoint subdisplay. Disables breakpoint modification.
(Used for real-time debugging.)
ouT Replace BRK op-codes with original instructions at addresses
specified in the Breakpoint subdisplay. Enables breakpoint
modification. (Used for interpretive debugging -— default.)
CLR Clear all breakpoints.

CLRn Clear breakpoint n.

Bugbyter Command Level Page 207

Memory Reference

Command

address:

address:opcode
or

address:value
or

address:'text"
or

address:'text'
or

(any mixture)

Function

Display 184 memory cells starting at address in hex and
ASCII. Use SPACE: to display next 184 cells. Press ESC
to return to Bugbyter Master Display.

Assign opcode mnemonic starting at address.

Fill address with hex value.

Fill address with ASCII character (MSB on).

Fill address with ASCII character (MSB off).

Multiple values and ASCII text (MSB on or off) can be
mixed freely in memory fill. Slash (/) accepts the next
character verbatim.

Edit memory subdisplay where:

H displays contents of address as hex and ASCII, or
P displays contents of address & address+l as pointer.

address Enter hex address of memory cell(s) to be
displayed.

SPACE or RIGHT ARROW advance to next cell.
LEFT ARROW return to previous cell.

ESC return to Bugbyter command line.

Disassembly Options for Trace and Single—Step Modes

Command

0=A

0=X

Function

Display 65P2 Accumulator in binary.

Display 65§2 X~register in binary.

Display 6502 Y-register in binary.

Display 652 Stack pointer in binary.

Display 65f§2 Processor Status register in binary.

Display instruction bytes in hex.

Page 208 Appendix C: Quick Reference Guide to Bugbyter

0=E Display computed effective addresses or relative branches
and instruction cycles.

Trace and Single-Step Modes Page

Trace and Single-Step Modes

Once in Trace or Single-Step mode (see T or S commands above),
Bugbyter responds to the following single keystroke commands:

Command

SPACE

RETURN

ESC

R

RIGHT ARROW

c

Function

Single step one opcode.

Continuous trace.

Return to Bugbyter command line.

Trace until RTS opcode encountered.

Skip next instruction.

Clear Cycle Counter.

Use Paddle @ to adjust trace rate.

Use Keyboard Rate (R=value) to adjust trace rate.
Sound off (quiet).

Sound on.

Display primary Apple screen.

Display secondary Apple screen.

Display Apple text screen.

Display Apple low-resolution graphics screen.
Display Apple high-resolution graphics screen.
Display full screen graphics.

Display mixed text and graphics.

209

Page 210 Appendix C: Quick Reference Guide to Bugbyter

User Soft Switches

Location Function

start+3 Execute undefined 6582 op-codes ($8@=on, PP=off {default}).

start+é Use Paddle Button @ for trace suspend ($8@=on, P@=off
{default}).

start+5 Use Paddle § for trace rate ($8p=on {default}, P@=off).

start+6 Trace or Single-Step keyboard polling

(MSB on + ASCII character code for escape character,
MSB off=normal polling {default}).

start+7 Sound ($8pP=on {default}, @@=off).
start+8,+9 Cycle Counter (low, high).
start+$A,+$B Beginning address of real-time code (default=$FFFF).

start+$C,+$D Ending address of real-time code (default=$FFFF).

Page 211

Appendix D

Error Messages

Editor Messages

Two types of errors may appear when you are using the Editor:

- ProDOS errors, indicating that a problem occurred while your
source file was read from disk, or while your edited text was
being saved to disk.

- Editor command errors, indicating that you typed an
unrecognized command or that you typed some command parameter
incorrectly.

If a ProDOS error occurs while you are using the Editor, the Editor
displays an error message and allows you to correct the problem. If the
Editor finds an error in a command that you typed, the Editor displays
an appropriate error message and ignores the illegal command. In
neither case will you leave the Editor or lose your edited text simply
because an error occurred.

ProDOS Errors

Both the Editor aund the Assembler use ProDOS to manipulate files that
are stored on disk. Thus you may encounter ProDOS errors while using
the Editor or Assembler. The Editor displays an error message (similar
to the ones found in the BASIC command interpreter) and returns to the
Editor Command Level, allowing you to correct the problem and retype the
command that caused the ProDOS error.

This Appendix lists the error messages most likely to appear while you
are uisng the Editor and Assembler.

Page 212 Appendix D: Error Messages

BAD PATH/FILE NAME

Indicates that you attempted to create a pathname with illegal
characters. ProD0OS allows only letters, digits, and periods in
pathnames. Each part of a pathname, whether a volume name, directory
name, or pathname, must contain no more than fifteen characters. The
parts of the pathname must be separated with slashes. No embedded
blanks are allowed. For details, see BASIC Programming With ProDOS.

DIRECTORY FULL

Appears if you attempt to save a file to a root directory that is full,
Root or volume directories are limited to 55 entries and may not be
extended automatically. You can create a subdirectory with the CREATE
command and then save your file in that subdirectory.

DIRECTORY NOT FOUND

Indicates that you used a pathname, with the PREFIX command, that is not
a mounted disk volume name, or is misspelled.

DISK FULL

Usually appears during a SAVE operation. Repeat the SAVE command, using
a disk with more free space.

DISK I1/0 FAILURE

Typically indicates a bad disk or a disk that is improperly inserted
into the drive. If this error occurs during a SAVE operation, your
output disk is probably bad and you should do a SAVE command onto
another disk. If it occurs during a LOAD operation, your file was only
partially read in and may be permanently lost (backing up is wise). 1If
this error occurs for the CATalog, you may have lost your disk directory
(a serious problem).

DUPLICATE FILE NAME

Appears if the new pathname you select with the RENAME command already
exists as the name of some other file.

FILE LOCKED
Appears if you LOCK your files, then try to SAVE to a LOCKED file. The

LOCKed file remains intact, as does your current edit file. UNLOCK the
file or change the SAVE name before trying to save the file again. It

Editor Messages Page 213

is good practice to lock all the files on your disk (except the one you
are editing) to avoid losing a file by SAVEing with the wrong name.

FILE NOT FOUND

Indicates that you tried to issue a directory management command (such
as LOCK, UNLOCK, DELETE, or RENAME) that cannot find a file, even if the
remainder of the pathname and/or the prefix is correct.

FILE SIZE MISMATCH

Indicates that you attempted to SAVE, BSAVE, or XSAVE a sequential file
to an existing file of the same type that currently has an end-of-file
value larger that the maximum size of the Editor's edit buffer. Since
the Editor could not have created such a file, this size conflict
suggests that you are attempting to clobber a file that is unrelated to
the Editor/Assembler system. You cannot examine the existing file,
because it won't fit in the edit buffer.

FILE TOO LARGE

(Can occur for the LOAD, BLOAD, and XLOAD commands.) Indicates that the
file you want to load is too large, or that when the file's length is
added to the load address the end of the file would extend beyond the
edit buffer.

FILE TYPE MISMATCH

Appears if you
- attempt to LOAD some kind of file other than TEXT, or try to
SAVE using a name that is already in use by a another type of
file, such as Integer or Binary.

- attempt to XLOAD a normal text file or one of the filetypes
XLOAD will not attempt to read.

- attempt to BLOAD a file that is not a binary (BIN) file.

PATH NOT FOUND

Indicates that you used a pathname with misspelled or nonexistent
subdirectory names in it.

Page 214 Appendix D: Error Messages

ProDOS FAILURE # => $xx

Indicates a serious failure, either in the Editor/Assembler system or
within ProDOS. Before doing anything else, write down as many details
as you can about the exact circumstances under which it occurred. You
may be able to determine its cause by examining the MLI error message
list in the ProD0OS Technical Reference Manual . Record the complete
configuration of your Apple II system, the type of disks in use, and
what commands you used just prior to the problem. This information
could be critical to locating a problem in ProDOS or the Editor/
Assembler system. Please report this information to Apple Computer,
Inc., preferably in writing, as soon as possible.

THE FILE IS LOCKED. DESTROY ANYWAY (Y/N)?

Appears if you attempt to DELETE a locked file. If you reply by
pressing Y, the file will be unlocked and then deleted from the disk
directory.

WRITE PROTECTED

Indicates that you attempted to SAVE to a disk that has a write-protect
tab.

Editor Messages Page 215

Editor Command Errors

The Editor checks the syntax, and the validity of the parameters, of
each command you type. The command descriptions in Chapter 2 discuss
the specific error messages that may appear following a given Editor
command.

BAD FORMAT ERROR

You typed the first string field of the Change command as a null string.

BAD RANGE ERROR

The second line number in a range (begin#-end# or begin#-count) has an
invalid ending line number. The Copy command requires the second line
number of its range parameter to be an existing line in the edit buffer.

BUFFER ERROR
You have attempted to use the ASM command when the edit buffer contains

some text lines. The buffer can be SAVEd and then cleared with the NEW
command.

CMD SYNTAX ERROR

You typed extra characters following a valid command or following a
valid command parameter,

INVALID PARAMETER

A printer or disk slot parameter has referenced an empty slot.
(Valid slot numbers are § through 7.) Or you tried to select COLumn 59
instead of 4§ or 80.

MEMORY FULL ERROR

You have filled all available text buffer space. This happens when the
Editor attempts to insert a line of text into the buffer; you lose the
line of text that you just typed or edited.

MULTI BUFFER ERROR

You have attempted to use the ASM command when both Editor buffers are
active. Review the KILL2 command description for details.

Page 216 Appendix D: Error Messages

NUMERIC OVERFLOW ERROR

A line number was found with a value larger than 63999,

PARAMETER OMITTED ERROR

You neglected to type a necessary parameter for the command you just
entered.

SYNTAX ERROR
If this message apears after a Del or Replace command, you typed a range
of line numbers with an implied ending line number. If it follows the

SAVE command, it indicates that you must type a pathname parameter; no
pathname has been previously defined by a LOAD or SAVE command.

UNKNOWN COMMAND ERROR

You have typed a command name that the Editor does not recognize.
Usually caused by a misspelling.

Assembler Messages Page 217

Assembler Messages

Two types of errors may occur when you are using the Assembler:

- ProDOS errors indicate that a problem occurred while ProDOS was
reading your source program from disk, or while it was writing
your object code to disk. When a ProDOS error occurs during an
assembly, the Assembler immediately stops the assembly.

- Assembler syntax errors indicate that the Assembler encountered
an unrecognized syntax or illegal usage in one of the assembly
statements in your source file. The Assembler displays an
error message and continues with the assembly.

ProDOS Errors

When a ProDOS error occurs during an assembly, the Assembler stops the
assembly, displays the ProDOS error message to indicate the problem, and
displays this message on the screen:

ASSEMBLY ABORTED. PRESS RETURN

The Assembler then waits for you to press RETURN before it attempts to
close any open files. 1If the Assembler encounters another ProDOS error
while trying to close files, it gives up and returns you to the Editor
Command Level.

By the Way: Many of the explanations that appear in the
Introduction to BASIC Programming With ProDOS are equally
applicable to situations in which you are using the
Assembler, so you may find it helpful to read that manual if
you encounter these errors.

DISK FULL

There is no space left on the output file disk for the output object
and/or listing file. This can occur at any time during PASS 2, so be
sure there is enough space on the disk for the output object and listing
files.

Page 218 Appendix D: Error Messages

DISK I/0 FAILURE

This is usually a read error, but it can also be a write error caused by
a bad disk. If it is a hard read error on an input file, the same
problem would show up when you try to LOAD that file. 1If it is a write
error on the object file, that file will show in the CATALOG as being
only one block, or it will get an I/0 error when you try to BLOAD the
file into memory.

FILE LOCKED
You have locked an existing copy of the object or listing file that the

Assembler is trying to delete so it can create the new one for the
current assembly.

FILE NOT FOUND

This error usually occurs because you used the ASM command with a source
pathname that does not exist or is not on the disk accessible via the
current prefix. It can also occur when a CHN or INCLUDE command is used
and the needed file is not present on the proper disk.

WRITE PROTECTED

You have a write-protect tab on the disk to which the Assembler was told
to write the output object and/or listing file. This will not occur
until the beginning of PASS 2.

By the Way: Many of the error messages relating to pathnames
and files (described under Editor Messages) can also occur
when you use the Assembler. Keep in mind that the Assembler
has one or more input text files and one or two output files
active during an assembly, to which any given error message
could apply.

If any other ProDOS error messages occur, the
Editor/Assembler system has probably been clobbered in
memory, because of either a software bug or a hardware
failure. Please refer any repeatable errors of this kind to
Apple Computer, Inc. 1in writing; if at all possible send a
disk that will reproduce the problem. Include all relevant
information: your machine type, memory size, peripheral
cards installed, number of disk drives and controllers in
use, and any modifications made to any of the above.

You should always attempt to recreate any problem with a
fresh copy of the Assembler/Editor system master disk before

Assembler Messages Page 219

concluding that you have found a program bug. Be careful
not to use your only copy of any important disks while
attempting to recreate a system failure.

Syntax Errors

As the Assembler processes an assembly-language source file, it checks
the syntax of each assembly statement and your use of identifiers and
operands. The Assembler reads your source statements during each of its
two assembly passes. Because different checks are performed during each
pass, some error messages will appear only during the first pass; some
will appear during the second pass; and some will appear during both
passes.

As you watch your assembly, you may want to stop the Assembler if you
see an error message that indicates a significant problem in your source
file.

At the end of the assembly listing, the Assembler prints an error total.
Because this is the sum of all errors encountered during both passes of
the assembly, this total may be larger than (even double) the actual
number of assembly statements that contain syntax errors needing your
correction.

When the Assembler finds an error in a source statement, it displays the
appropriate error message and skips to the next assembly statement. For
this reason, the Assembler may not indicate all of the syntax errors in
your assembly statements the first time you try to assemble your
program. The Assembler may still find secondary errors in your source
program after you have corrected all of the errors flagged in a previous
assembly.

You may sometimes see an Assembler syntax error message that indicates
one of a number of possible errors. To identify the specific problem
that caused the error, you will have to check your specific source
statement.

ADDRESS MODE ERROR

The 65¢2 does not support all address modes for all opcodes, and this
error occurs when an invalid combination of opcode and address mode is
found in a statement.

Page 220 Appendix D: Error Messages

ASSEMBLER PARAMETER ERROR

The Assembler checks the parameters of the ASM command, passed from the
Command Interpreter, for correct value ranges. This error message is
associated with line P of an assembly. There are three possible causes:

- The slot parameters are not within their valid ranges.

- The source filename is longer than thirteen characters and
output is generated automatically.

- A pathname more than 32 characters long is used for the output
listing file.

BRANCH RANGE ERROR

The 6502 relative branch instruction has a limited addressing range. If
the target address of a branch instruction is too far from the branch
instruction, this error message is generated in pass two.

BUFFER SIZE ERROR

The SBUFSIZ directive issues this message if the requested new buffer
size would reduce the source buffer to a size smaller than the source
file currently residing in the buffer. The SBUFSIZ directive should be
used to reduce buffer size only from a source file smaller than the
desired reduced size.

BYTE OVERFLOW ERROR

The DS directive issues this error if the optional value expression is
larger than eight bits. The expression directive characters can be used
to ensure that this error is not generated.

DIRECTIVE OPERAND ERROR

This is a catchall error message for many of the assembler directives
that require specific operands. Generally, this message indicates that
an expression contained some other character where a delimiter

was expected. For example, this statement would cause this error:

LABEL EQU 33;I FORGET THE SPACE AFTER THE OPERAND
The data definition directives check for spaces after commas when an

expression list exists in an operand, issuing this error if the spaces
are found.

Assembler Messages Page 221

The LST directive's option syntaxer also issues this error if an invalid
option character is encountered. The NO prefix for the LST options must
be spelled exactly NO or no.

DSECT/DEND ERROR

The DSECT directive begins a dummy section, and the DEND directive
terminates it. This error indicates one of three things, depending on
the directive in the incorrect statement:

- You attempted to nest the DSECT statement inside an active
dummy section (starting a second DSECT within a dummy section).

- You terminated a dummy section with a DEND directive when a
dummy section was not active.

- You started a dummy section and did not terminate it with DEND.

DUPLICATE EXT/ENT ERROR

The EXTRN and ENTRY directives check whether a symbol being defined as
an external or entry symbol has not already been so defined in a prior
EXTRN, ENTRY, or ZDEF statement. Any one symbol can be defined only
once as having one of these special characteristics.

In addition to this duplicate directive function, the expression
evaluator checks each identifier in an operand expression and issues
this error when it encounters a second external identifier in any
operand expression.

DUPLICATE IDENTIFIER ERROR

This error occurs when an identifier, in the label field of a statement,
is an exact duplicate of a previously defined identifier. Some other
name must be chosen for the identifier in the offending statement. Tt
is possible to have multiple duplicates, all or some of which should be
unique identifiers. The symbol table dump will not show multiple
entries for duplicates flagged with this error.

EQUATE SYNTAX ERROR

The equate directive requires an identifier in the label field; this
error occurs if the label field is empty (it doesn't make sense to
define nothing as having some value). This error also occurs if the
operand expression contains any external identifiers.

Page 222 Appendix D: Error Messages

EXPRESSION SYNTAX ERROR

The expression evaluator requires that a valid term follow each operator
within an expression. A term in an expression is either a constant or
an identifier. This error occurs when the text of a statement
immediately following an operator, such as the addition operator (+), is
not recognized as one of these two items. Terms are recognized by their
first character, as follows:

First

character Term type

% Binary constant

@ Octal constant

$ Hexadecimal constant

" ASCII character constant

* Program counter reference

digit Decimal constant

letter Identifier (uppercase or lowercase)

This error also occurs if one of the radix characters used to begin
numeric constants is not followed by any digits appropriate to that type
of constant. For example, %4 causes this error because only @ and 1 can
follow the % (binary) radix character.

EXTRN USED AS ZXTRN WARNING

An identifier, defined as a 16-bit external value by the EXTRN
directive, was used as an 8-bit quantity, either as a zero page address
or as an immediate operand. This produces nonrelocatable object code if
the external value turns out to be an absolute value when a linker
attempts to linkage-edit the REL modules together.

The ZXTRN directive should be used in place of EXTRN for this type of

identifier, and such identifiers should be defined using the ZDEF
directive in the defining module (refer to ZDEF and ZREF for details).

INCLUDE/CHN NESTING ERROR

The INCLUDE directive cannot occur as a statement within an included
file.

Assembler Messages Page 223

INDEXING SYNTAX ERROR

The addressing syntax required by the assembler does not allow any
character to follow a comma except X or Y for absolute or zero page
indexing address mode specification.

INDIRECT REQUIRES ZPAGE ERROR

The Assembler checks the type of an expression in the indirect-indexed
and indexed-indirect addressing modes. If the expression is not a zero
page expression, this error results (this is a limitation of the 6502

microprocessor).

INDIRECT SYNTAX ERROR

This error has two possible causes:

- 1Invalid syntax was used for indirect-indexed and
indexed-indirect addressing modes. The most common mistake is
the improper use of the X and Y registers, for example: LDA
(expr,Y) and LDA (expr),X.

~ The right parenthesis was omitted in the indirect addressing
modes.

INVALID AFTER 1ST IDENTIFIER ERROR

The SBUFSIZ and IBUFSIZ directives allow source and include buffer size
management from the assembling program, but they must be used before the
first reference or definition of an identifier.

INVALID DELIMITER ERROR

This message indicates incorrect use of delimiters. The expression
evaluator requires that all operand expressions terminate with a space
or a carriage return character. Various directives require the comma as
a delimiter and do not allow spaces after commas. The indexing and
indirect addressing syntaxes all require specific character delimiters.
The delimiters are the space, the carriage return, the comma, and the
parenthesis. When the assembler expects one of these characters and
does not find it, this error results.

Page 224 Appendix D: Error Messages

INVALID FROM INCLUDE/MACRO ERROR

The SBUFSIZ and IBUFSIZ directives may not occur in an include file.

INVALID IDENTIFIER ERROR

This error indicates one of two errors:

-~ An identifier contains a character not allowed within an
identifier (identifiers must begin with a letter and contain
only letters, digits, and the period).

- An identifier is not allowed as the operand of a directive,
usually because of a previous similar use and some resulting
conflicting definition. For example, an identifier cannot be
used in the label field of an instruction and be the operand of
the EXTRN directive.

OBJ BUFFER CONFLICT ERROR

An OBJ expression was used that is less than the current end of symbol
table.

OBJ BUFFER OVERFLOW ERROR

The first OBJ directive in an assembly defines the lower limit of the
OBJ buffer for an assembly. If the OBJ buffer fills up to the Assembler
code area, this error message results and the assembly is cancelled.

OVERFLOW ERROR

The ASCII source-to-binary conversion routines that couvert numeric
constants into binary values issue this error message if a constant is
entered that generates more than 16 bits of constant. For example, the
constant $33333 has too many digits, only four being allowed in a
hexadecimal constant.

RELATIVE EXPRSN OPERATOR ERROR

When the REL directive has selected relocatable object—code output, the
assembler does not allow a relative address expression or subexpression
be divided, multiplied, ANDed, ORed, or exclusive-ORed because doing so
causes the result to be nonrelocatable. This prohibition applies only
if REL has been used in an assembly.

Assembler Messages Page 225

RESERVED IDENTIFIER ERROR

The Assembler does not allow the labels A,a,X,x,Y,y as identifiers. If
you insist on using these identifiers, there is a patch address offset
in bytes 3 and 4 of the EDASM.ASM file (using § base counting of code
bytes) that indicates how far into the object code image to place a
patch to cause this checking to be nullified. The patch consists of a
CLC ($18) and a RTS ($6@) opcode. They should be patched over the first
two bytes of a JSR instruction.

SYMBOL/RLD TABLE FULL ERROR

This error occurs when insufficient space is available for the symbol
table and, if the REL directive was used, for the relocation dictionary
tables. The SBUFSIZ and IBUFSIZ directives default to a total size of
5K, which may be reduced to as little as one page each to provide
additional symbol/RLD table space.

UNDEFINED IDENTIFIER ERROR

This error, generated in pass two, indicates that an identifier was
referenced but never defined in the assembly source. It is most
commonly caused by misspelling an identifier.

UNDEFINED OPCODE ERROR

This error occurs when macros are not enabled (the default condition)
and a mnemonic is used that is not found in the assembler's mnemonic
table. This is most commonly a spelling error.

>256 EXT/ENT ERROR

When creating the relocation dictionary, the Assembler assigns a unique
number (1 to 255) to each EXTRN and ENTRY identifier. The Assembler
cancels if you use more than 255 such symbols in your source file.

6502X ADRS MODE/OPCODE ERROR

The Assembler encountered an opcode or an opcode/address-mode
combination that is legal only for the 6582X microprocessor. If you are
not creating software for a system with the 6502X, you have used an
instruction that will not work in your Apple II. Refer to the X6502
directive for more details.

Page 226

Page 227

Appendix E

Object File and Symbol Table Formats

Object File Format

The Assembler generates two kinds of ProDOS object files: Dbinary
memory-image (BIN) files and RELocatable binary code (REL) files.
Unless you use the REL Assembly directive at the start of your
assembly-language source file, the Assembler produces a BIN file using
the standard ProDOS binary format. The INTERP directive can change the
BIN output file type to SYS for creating a ProDOS interpreter file.

You can use the BLOAD command to load Binary files produced by the
Assembler, or, if your program is properly coded, you can BRUN your
program from the normal BASIC/ProDOS environment (but not from within
the Editor Assembler system). To be executable by the BRUN command,
your program must begin with executable code, not data, at the lowest
address for which object code is generated.

The RELocatable binary file type is recognized by ProDOS but not
explicitly supported by any ProDOS commands. Table E-1 defines the
format of this file type. The symbol => may be read as "indicates" in
this context.

Page 228 Appendix E: Object File and Symbol Table Formats

Table E—-1. Relocatable File Format

Byte
Block (HBex) Contents of byte
¢) Length of code image, low byte
1 Length of code image, high byte
@ to N 2 to cl+l Binary code image, of length in

bytes § and 1 above

2 to cl+2 Begin relocation dictionary (Table E-2),
which consists of N 4-byte entries.
N is variable. Each four bytes repeat
the structure shown in Table E-2.

Object File Format Page 229

Table E-2.
Relocatable File Relocation Dictionary Format

Byte Contents of Byte

1 RLD-flags byte containing 4
flag bits as follows:

$80 bit Size of relocatable field
SET => 2 byte, Clear => 1 byte

$4p bit Upper/Lower 8 of a 16 bit value
Set => high 8, Clear => low 8

$2¢ bit Normal/reversed 2 byte field
Set => hi-low, Clr => low-hi
(the DDB directive causes Set)

$19 bit Field is EXTRN 16-bit reference
Set => EXTRN, Clr => not EXTRN

$P1 bit “NOT END OF RLD" flag bit always set
ON for RLD entry Clear marks end of

RLD
2 Field offset in code, low byte.
3 Field offset in code, high byte
4 Low 8 bits of 16 bit value for an 8-bit field

containing upper 8 bits, zero if $40 bit clear
in RLD byte one. Or, if the $1ff bit is set,
then this is the ESD symbol number.

N*4+1 Binary @9 marks end of RLD.
N*4+2 Beginning of optional external symbol directory

(ESD). This area will only contain bytes if an
EXTRN and/or ENTRY directive occurs in the

program.
1 to The EXTRN/ENTRY symbolic name of
sl length sl bytes. All bytes have

their $8§ bit set except the last one.

sl+l Symbol type flag byte defines
which type of symbol EXTRN/ENTRY.

$1P bit Set => EXTRN symbol type.

Page 230

$P8 bit

sl+2

s1+3

End
mark

Appendix E: Object File and Symbol Table Formats

Set => ENTRY symbol type.

EXTRN/ENTRY symbol number referred
to by an RLD entry with EXT bit
set omn,

High byte of offset for ENTRY
type symbol (low is in sl+2).

Binary zero byte marks end of
the ESD entries, of which there
may be zero.

Symbol Table Formats Page 231
Symbol Table Formats

This section describes the symbol table generated during pass one of the
assembly, and the table format as it remains after the symbol table has
been modified by the symbol-table sort and print routine (pass three).
The symbol table will be in its modified form, and the RLD may be
clobbered if the symbol table sort and dump is allowed to execute and it
overwrites the RLD with its sort index table.

The symbol table is a variable-length entry-format table with flag bits
to signal the end of the variable-length-name character string.

When the Symbol Sort and Dump routine executes, it modifies the symbol
table format to speed up the scanning of the table for its second phase.
The last character of each symbol has its high-order bit set on and the
Flagbyte is changed. 1If the Flagbyte has its $8p bit set its value is
changed by ORing it with $7E to set all bits on but the $¢1 bit, which
ig retained; and the $89 bit is set off to mark the end of the Symbolic
name. Thus if pass three is run, all Flagbytes will have thelr $80 bits
reset, and undefined symbols will have Flagbytes of $7E or $7F.

The basic format is

(Symbolicname)(Flagbyte)(Low value)(High value)

Symbolicname

Consists of 1 to n characters, each with its $80 bit set, except that
the last character's $8f bit is reset.

Flagbyte

Contains the bits that define the characteristics of the symbol and its
value and how it can be used to generate instructions, as described
below:

$89 bit (Undefined-Symbol bit)

This flag means that the symbol was referenced but not defined. This
flag is reset when a symbol is defined, and if it remains set at the end
of pass one, the symbol is undefined and will cause the NO SUCH LABEL
error during pass two. Symbols with this bit set are printed by pass
three with an "*" next to the "address" (which is meaningless: it is
simply the value of the program counter at the first reference).

Page 232 Appendix E: Object File and Symbol Table Formats

$40 bit (Unreferenced-Symbol bit)

The symbol was defined but never used as the operand of any instruction
in the program. This bit causes a ? to be printed next to the address
value for an unreferenced symbol in the dump.

$20 bit (Relative-Symbol bit)

The symbol's value is a relative symbol rather than an absolute address.
Relative means relative to the beginning of the module. It is used
internally by the assembler when generating the Relocatable type of
output file to cause an RLD entry to be created for any references to
the symbol.

$19 bit (EXTeRNal-Symbol bit)

The symbol was defined as an external symbol via the EXTRN directive.
This causes the symbol to be put into the ESD and prevents the symbol
from being considered undefined, even though no value is assigned to the
symbol. Using such a symbol causes an RLD entry to be marked as EXT and
causes the external symbol number to be put in the RLD entry in place of
the relative offset. EXTeRNal symbols can represent only undefined
16-bit values (not-8 bit or zero page values).

$P8 bit (ENTRY-Symbol bit)

The symbol is an entry point into the module that can be referred to by
an EXTRN in another module. This causes the symbol to be included in
the ESD for resolution by a linkage editor (no linkage editor has yet
been implemented).

$P4 bit (MACRO-bit)

This symbol is a macro name., The value is the mark position in the
transient macro file of the beginning of the macro body's text. This is
not yet implemented.

$P2 bit (NO-Such-Label Error bit)

The symbol has caused one or more NO SUCH LABEL errors. This is used to
prevent a duplication of a single error in the error summary table
during pass two.

Symbol Table Formats Page 233

$p1 bit (Forward-Referenced bit)

A forward reference forced the symbol to be considered a 16-bit value.
Zero page labels print in the symbol dump with blanks for the first two
bytes. They print with two zeros when this bit is set. If the
definition is moved forward so that the symbol is defined before it is
referred to, reassembling the program will generate shorter, zero page

instructions.

Page 234

Page 235

Appendix F

Editing BASIC Programs

You can use the Editor to perform many useful editing functions on the
text of your BASIC programs. For example, you can use the Find command
to locate all statements referring to a given BASIC variable or line
number. You can use the global Change command to change all occurrences
of a variable name to a new name, or to change all occurrences of a
GOSUB to some other line number.

To use the Editor to edit BASIC programs, you must first convert the
BASIC program into a sequential text file. BASIC Programming With
ProDOS contains a section ("Listing a Basic Program to a File") that
shows how to do this. After you have converted the BASIC program into a
sequential text file, you can then LOAD the text using the Editor and
edit the program as you would any other text file.

When editing BASIC programs, be careful not to change the line number of
a statement without also changing all of the references to it elsewhere
in the program. It is best to avoid using the Editor to change line
numbers within a BASIC program. Instead, use the renumbering function
of APA (Applesoft Programmer's Assistant, on the EXAMPLES disk),
designed for that purpose. (APA is described in BASIC Programming With

ProDOS.)

When you use the Editor to edit a BASIC program, the Editor shows two
line numbers on every line. The first is the Editor's relative line
number, and the second is the line number of the BASIC statement. Only
the line number of the BASIC statement is actually stored in the text
file. As you edit, you must use the Editor's relative line numbers as
the line number parameters for Editor commands.

When you are finished editing, you must SAVE the text file back onto
your disk and reenter BASIC, using the Editor EXIT command. Then, to
reenter your edited text into BASIC, type the command

EXEC myprogram
where myprogram represents the name of your BASIC program text file,

This command causes ProDOS to read the entire text file from disk into
BASIC, just as if you typed it from the keyboard.

Page 236 Appendix F: Editing BASIC Programs

Because BASIC places each line from your text file into a BASIC program
according to its line number, each line of your BASIC text must begin
with a line number., The order of the lines within your text file is not
important; changing the order of the lines without changing their line
numbers will not change the way your program will be interpreted by
BASIC.

Page 237

Appendix G

System Memory Use

The Editor/Assembler

The memory map in Figure G-1 shows the memory used by the Editor/
Assembler. The memory map in Figure G-2 shows where Bugbyter and your

own program may reside.

Figure G-1 shows the memory areas used by the various modules that make
up the Command Interpreter-Editor and the Assembler. The Assembler
shares the same memory space as the all of the Editor and part of the
Command Interpreter, or CI. When you invoke the Assembler, the CI
overlavs the Assembler code over the text buffer and the Editor, as

shown in the figure.

Notice: This memory map of the system is provided for
reference only. Apple Computer, Inc. reserves the right to
change or expand the areas used at any time and without

notice.

Page 238 Appendix G: System Memory Use

Figure G-1. Editor/Assembler Memory
Map

PPPP| Editor Sweet 16 registers
PPPA| Editor LOMEM, HIRAM, and
PPPF| Text End pointers (6 bytes)
@PFF| Editor/Assembler zero page
$1pp| Editor/Assembler

P1FF| 6502 stack area

920@| Editor input buffer area
P2FF
@3pP| UNUSED memroy
@#3EF
@3FP| Apple // Montior interupt vectors
@3FF| for BRK, RESET, NMI, and IRQ
P4PP] Editor and Assembler text

@7FF| screen display page 1

#80P| Editor edit buffer

Editor edit buffer T7A00] Begin Assembler overlay

9BFF end edit buffer
9CPP| Begin Editor overlay :
BPFF| end Editor overlay B@FF end Assembler overlay
B1f9| Command Interpreter

BFFF| ProDOS GLOBALS

LANGUAGE_CARD
DPPP| Editor Code [DPPB| Assembler Tables
DFFF| Card 4K fold ($CP89) |DFFF| in 4K fold ($CP88)
E@PP| ProDOS_OPERATING SYSTEM
FFFF| Reset Vectors

The Bugbyter Debugger Page 239

The Bugbyter Debugger

Figure G-2. Bugbyter Memory Map

48K motherboard RAM: Optional Language or RAM Card:
$BFFF: + + SFFFF: + +
ProDOS Monitor
$960¢: + + $F8¢¢: + +
Bugbyter
Bugbyter can reside
can anywhere + +
reside in here undefined
anywhere SDPPD: + + o+ +
in bank 2 bank 1
here
$800: + +
text screen
$4pp: + +
$200: + +
stack
$190: + + < first $20 bytes reserved ($109~11F)
zero page
f: + +

Note: Bugbyter reserves the last 32 bytes of the program
stack.

Page 240

Index

A

ADD command 34
ALL OR SOME prompt 41
&) parameter 117-118
&X parameter 118
ASC directive 1§45
ASM command 16, 29
Assembler 3, 7, 16
See also Appendix B 195
assembly language source files 85-91
assembly listings 111-114
assigning information 99-1¢2
conditional assembly 106
error recovery 76
generating data 102
giving directions 91-114
invoking 75-76
macros in 114-118
printing listings 77-8§
source files 1(9-11¢
stopping assembly 76
Assembler Tools disk 15, 16
Assembly directives 91
Assembly language 3
assembly language source files 85-91
assembly listing 81-83

B

backup disks 8

BASIC 7

BASIC programs 2§, 31, 176
See also Appendix F 235

BASIC prompt (]) 25

binary file 7

binary notation 88

Page 241

Page 242 Index

BLOAD 7, 52, 173

breakpoints 132

BRUN command 7

BSAVE 52

buffer overflow 96

Bugbyter 3, 7, 123-17¢
See also Appendix C 203
breakpoint subdisplay 157-158
command level 127-128
commands 133-134
controlling program execution 154-170
customizing the display 152-154
editing functions 134
entering monitor 146-147
execution mode 162-164
master display 127-128
memory displays 147-154
memory page display 144
modes 132
relocating program 146
restarting 147
restrictions 125
single~step mode 154-162
subdisplays 129-132
trace mode 154-162

bugs, definition 123

c

CALL 177

calling a program 7

carriage return 14

CAT for CATalog 22

Change commands 41-42

character(s), editing 43-45

CHN directive 109

CHR directive 114

CHR(S$4) 176

clock card 15, 27, 77

Code disassembly subdisplay 153

colon (:), as delimiter 42
as prompt 26

command delimiter 42

command execution 61-64

comment field 91

comment lines 85

conditional assembly 106

control characters 35

CONTROL~A 41

CONTROL-B 133

CONTROL-C 26, 39, 4§, 76, 133

Index Page 243

CONTROL-D 21, 34, 133
CONTROL-E 28, 44
CONTROL-F 44

CONTROL-I 21, 133
CONTROL-N 83

CONTROL-0 83

CONTROL-R 39, 44
CONTROL-T 44

CONTROL-V 44

CONTROL-W 28, 44
CONTROL-X 45, 133
CONTROL-Y 51
conversions, decimal and hexidecimal 152
COpy command 36

current pathname 3§
cursor 26

cycle count register 161

D
DS 176
date 27

DATE directive 106
DCI directive 185
DDB directive 103
debugging 7, 123
in programs that use keyboard and display 166-169
real-time code 164-166
decimal notation 88
DEF or ENTRY directive 108
DEL command 35
deleting, characters 21
DFB or DB directive 1¢2
DIMENSION 175
disk, directories 28-31, 56-58
backing up 8
Disk II drive 110
display 47
40~ or 8f-column 48
master (Bugbyter) 127-128
NV-BDIZC 151
truncating 48
options 159-169
DO directive 106
DOS 3.3 Assembler 1{4
DS directive 103
DSCET and DEND directives 94-96
dummy section(s) 94-96
DW directive 103

Page 244 Index

E

E for Edit 2§
EDASM file(s) 29
edit buffer 14
edit mode 43-45
editing, line 20
Editor 3, 13
See also Appendix A 183
abbreviating command 26
command level 16-17, 26
editing two files 46-47
input mode 34
leaving 25, 49
using printer 58-61
writing programs 23-25
8¢-column text card 4, 16, 26, 27, 73, 78
ELSE directive 1§6-~107
embedded spaces 30
entering text 18-20
EQU directive 10§
error messages, See Appendix D 211
EXEC file 27
Execs, with Assembler 64
EXIT 25
external symbol directory (ESD) 109
EXTRN or REF directive 101

F

FAIL directive 105

field(s) 86-91

FILE 18

file(s), backing up 32
EDASM 29
EXEC 27, 31
loading and saving 31, 52-56
macro definition file 115
merging 32
non-text 52-54
saving and retrieving 31-33
source files for assembly language 85-91
storing and retrieving 21-23
type 22
viewing from disk 4§

FIN directive 106-1§7

Find commands 4@

Index

G

game 1/0 port 168
game paddles 159

H

hexadecimal notation 88
HIMEM address 173-174
Hopper. Grace Murray 123

I

identifiers 6

IFxx directives 107
INCLUDE directive 1§9
inserting, characters 21

J

jump instructions 177

L

L for List 19, 22
label field 86
LDY instruction 136
LEFT-ARROW key 21
line(s) 14
adding 34
appending 23
changing text within 48
comment 85
copying and moving 36
deleting from buffer 35
inserting 35
listing 38
printing 39
replacing in text buffer
Linker 99
Linking Loader 99
LOAD 23
LOCK command 33
lowercase 5

36

Page 245

Page 246 Index

lowercase characters 27, 44
LST directive and options 111-113

M

MACLIB directive 114-115
macros, in Assembler 114-118
MEM command 148

memory, and Bugbyter displays 147-154
memory address, setting 149
memory cell subdisplay 153
memory subdisplay 139
mnemonic field 87

mnemonics 6, 125

MONitor command 51

most significant bit 104, 185
most significant bit (MSB) 88
MSB directive 104

multiple commands 27

N

NEW 22
numeric variables 175
NV-BDIZC display 151

0

OBJ directive 96
object code, generating data 102
object file, supressing 76
object file format, Appendix E 227
object program 7, 78
octal notation 88
ON ERR statement 176
ONLINE 29
opcodes 91
undefined 169-17¢
OPEN-APPLE key 168
operand field 87
operating system, ProDOS 15
ORG directive 92-94
overflow error 11§

Index

P

P for Print 19
PAGE directive 111
page eject 111
pathname 18
PAUSE directive 98-99
PreFiX 29
changing 29
current 29
startup 3¢
printer 5
with Assembler 77-80
with Editor 58-61
ProD0OS, operating system 15
prefix 28
text file 85
ProDOS Assembler Tools disk 15
program, changing in memory 142
tracing 141
program assembly 72-75
PTRON and PTROFF 59-60

Q

question mark (?) 26

R
R files 174
RBOOT 174

register Y 137
registers, altering contents 151
REL directive 97, 174

relative line number 14, 23, 27, 36, 37

Relocating loader 3, 173-177
restrictions 175

relocation directory (RLD) 100

REP directive 113

RIGHT-ARROW key 21

RLOAD 174

root directory name 28

RTS instruction 143

S
SAVE 21, 25, 33

SBTL directive 114
SBUFSIZ and IBUFSIZ directives 110

Page 247

Page 248 Index

search 4§
and replace 41
self-modifying code 99
SET command 42, 148, 152-154
SET Lcase 28
SET Ucase 28
SHIFT-key modification 5, 27
single-stepping 135
6502 mnemonics 158
6502 registers 129
SKP directive 114
Smarterm 8@-column text card 4-5
S0S operating system 54
source files 6, 7
assembly language 85-91
stack pointer 138
stack subdisplay 151, 153
startup prefix 16
STORE subroutine 138
STR directive 105
string variables 175
symbol table format, Appendix E 227
symbol table listing 83-84
symbolic identifier 10§
syntax, of assembly statments 85
SYS directive 94
System Identification Byte 5
system memory use, See Appendix G 237

T

tab settings 19
tab(s) 44, 47
TESTPROGRAM 21-23, 71, 126, 134
text buffer 16, 18, 72

clearing 22

37

viewing 38
time 27
TIME directive 186
trace rate register 159
transparent breakpoints 156-157
TRuncON and TRuncOFF 48-49
TXT for TeXT 22

Index

U

UNLOCK command 33
uppercase 5

uppercase characters 27
USR(®) function 176

\Y

verbatim 44
volume name 29
volume swapping 98-99

W

wildcard(s) 42
write-protection 33

X

X-register 143
X6502 directive 97-98
XLOAD 52

and file type restriction
XSAVE 52

Z

ZDEF directive 101
zero-page globals 1§2
ZXTRN or ZREF directive 102

55

Page 249

“Apple Il

ProDOS Assembler Tools

Packing List
This package contains the following items:
ltem Quantity Part Number Description
1 1 680-0194 Disk: ProDOS Assembler Tools
2 1 030-0551 Manual: ProDOS Assembler Tools
3 1 030-0136 User Input Report Form
4 1 030-0859 Warranty Card
5 1 825-0623 ProDOS Assembler Tools Spine and Tab Labels
6 1 030-0910 Description Sheet
Peel off labels and adhere
i e
ProDOS Assembler Tools
ProDOS |
Assembler Tools ProDOS Assembler Tools
ProDOS ProDOS Assembler Tools
Assembler Tools
’ ProDOS Assembler Tools
250

In case of questions, contact the dealer from whom you purchased this product.
-

030-0552-A

102483

